
© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 1

Executive Summary
Unmanaged Virtual Private Servers (VPS) are a popular way of getting what feels like "your own
server" from a remote service provider. However, while you can get a Un*x virtual private server
cheaply and easily today, there are still many details associated with bringing up a functional
and secure system. This document is meant to help users bring up a secure-yet-usable system
for purposes including personal email, serving static web pages, and miscellaneous purposes.

This document assumes technical users are working from a local Mac laptop, and are spending
$10-$20/month for a remote Virtual Private System (VPS) running Debian 11 ("Bullseye"). Why
Bullseye and not Bookworm? At the $10-$20/month price point, the VPS may have quite
modest resources, including perhaps as little as 512MB of RAM. "Bullseye" recommends
512MB (see https://www.debian.org/releases/bullseye/amd64/ch03s04.en.html), and thus would
fit in that configuration, while Bookworm's absolute minimum for a standalone system is
1024MB of RAM.
(see https://wiki.debian.org/DebianEdu/Documentation/Bookworm/Requirements).

Despite our quite-limited VPS hardware, we'll demonstrate...

● Basic authoritative DNS records that should be created in one's DNS provider's control
panel

● Bringing up sshd for encrypted remote access with public key authentication and
Yubikey MFA support

● Getting automatic patching set up
● Setting up ufw (with ipsets) for firewall service
● Using NTP for time synchronization
● Configuring and running a DNSSEC-enabled recursive resolver service
● Installing Postfix for email, complete with SPF/DKIM/DMARC and opportunistic TLS
● Setting up an NGINX web server to deliver static web pages with Let's Encrypt free TLS

certificates
● While malware's not the problem for Un*x systems that it is for Windows, we do also

install two anti-rootkit products and a system auditing tool as part of the build
● Finally, we address the reality that having only 512MB forces us to forgo many classic

security tools and services we really wish we could have shoe-horned in, including
staples such as ClamAV and SpamAssassin.

No security document can guarantee a "bulletproof" system, but we hope this document will
provide a solid and usable foundation for those setting up a basic VPS like the one described
above.

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 2

https://wiki.debian.org/DebianEdu/Documentation/Bookworm/Requirements

Table Of Contents

Executive Summary...2
Table Of Contents.. 3
I. Introduction...4

1. What We're Doing Today... 5
2. "Why Is DomainTools Writing About Helping Users Secure New Servers of All Things?"...5
3. "Is This Document Right For ME?".. 6
4. "Which Specific Hosting Service Is This Writeup Keyed To?"..7
5. "Why Debian Linux? Why not Ubuntu, Rocky/Alma Linux or … Instead? Or FreeBSD,
NetBSD, OpenBSD? Or…"..10

II. AUTHORITATIVE DNS... 12
7. Verify Your System's Authoritative DNS Entries Are Present and Correctly Configured... 13
8. DNSSEC Signing Your Zone?... 13

III. SSHD: REMOTE ACCESS TO YOUR SERVER... 15
9. ssh with ed25519-sk keys (FIDO/U2F)..16
10. Creating ed25519-sk Keys.. 19
11. Protecting Your ssh Private Key on Your Local Workstation..21
12. Getting Your new ed25519-sk Public Key(s) up Onto Your New Server......................... 21
13. Configuring Your Mac's ssh Client to Use the New ed25519-sk Key Pair for the New
Remote Server...23
15. Troubleshooting... 25
16. An Aside: Fixing Default vi/vim Options in /etc/vim/vimrc.. 27

IV. PATCHING... 31
19. We Now Have Secure Access to Our VPS via ssh -- Now What? PATCH!.....................32
20. Enable Automatic Updates.. 34

V. FIREWALL USING UFW AND IPSET.. 35
21. Enable ufw for Firewall Protection... 36
22. Configure ipset and ipset-persistent.. 40
23. Verify What's Open and Closed...43

VI. NTP.. 44
24. NTP (Network Time Protocol).. 45

VII. Recursive Resolver Service ("DNS") Using unbound... 47
25. unbound (Recursive DNS Service with DNSSEC Support)...48
26. Installing the postfix MTA (SMTP) and alpine (a local command line email client)..........52
27. What About Maildir?.. 55
28. Adding SPF..56
29. Adding DKIM..58
30. Adding DMARC... 61
31. Blocking Email from Entire TLDs... 62

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 3

IX. HTTP and HTTPS (Web) using NGINX..63
32. Installing and Configuring NGINX to Serve Unencrypted Web Pages............................ 64
33. Obtaining and Configuring Let's Encrypt Certificates for TLS..67

X. Opportunistic TLS for Postfix MTA-to-MTA Traffic.. 70
34. Configuring Opportunistic TLS for Postfix..71

XI. Malware... 73
35. Scanning for Malware.. 74

XII. System Auditing Tools..77
36. Lynis...78

XIII. Memory Considerations.. 79
37. Avoiding OOM (out of Memory) Events by Careful Selection of The Services to Be Run...
80
38. Managing Swapping.. 81

XIV. Conclusion..82
XV. Acknowledgements.. 84

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 4

I. Introduction

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 5

1. What We're Doing Today
Self-managed Virtual Private Servers ("VPS") have made new systems cheap for technically
knowledgeable people to deploy, whether for hosting a personal ("vanity") domain, to create a
remote distributed node from which to collect data, for use in working with DNSDB API or the
Security Information Exchange data, or for other purposes. Whilst the process of setting up
those new systems has gotten easier over time, there are still some "minor details" to attend to,
particularly if you're doing a "one-off" build and won't be leveraging system automation tools in
deploying that new node. This document will outline some of the considerations you may want
to keep in mind while securely setting up such a new system. Of course, the precise setup you
need to perform will depend on the exact capabilities you need and the services you want to
run.

For the purposes of this article, we're going to assume:

Table 1: System Requirements

Attribute Value

System Type Small self-managed Virtual Private Server (VPS)

Network Attached? Both IPv4 and IPv6 connectivity

X Windows (GUI) support? Command line interface only

Firewalled or reverse-proxied? Firewalled

Internet Accessible
Applications?

ssh (with public key auth and MFA), email (smtp with SPF+DKIM+DMARC);

static web pages over https (with nginx and Let's Encrypt certificates)

Internal-Only Applications? Recursive DNS (with DNSSEC), NTP, chkrootkit & rkhunter, Lynis, backups, and

DNSDB API and SIE Remote Access (not installed as part of this document)

2. "Why Is DomainTools Writing About Helping Users Secure
New Servers of All Things?"
Some customers may want to set up and use a virtual private server to run DNSDB API or to
access the Security Information Exchange via SIE Remote Access. We're also going over this
content today because one of our explicit company objectives is to "help make the Internet a
safer place." Part of that includes helping people have secure systems -- particularly if the
system in question is used by one of our customers!

That said, let us be clear: even if a reader diligently follows ALL of the advice in this document,
no one can warranty that you or your system will always be "perfectly safe and secure." There
may be things we've inadvertently overlooked (or intentionally excluded), latent undiscovered
vulnerabilities, novel new attacks, typos on our part (or yours), untrustworthy staff at the hosting
provider, or many other issues that may keep a relatively-well-configured systems from being
fully secure. After all, as notable cybersecurity expert Gene Spafford

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 6

(https://en.wikipedia.org/wiki/Gene_Spafford) once said, "The only truly secure system is one
that is powered off, cast in a block of concrete and sealed in a lead-lined room with armed
guards -- and even then, I have my doubts."

We can't insist on a "Spafford-like" level of security. We need systems that authorized users can
use to get their work done. Nonetheless, we believe that the steps outlined in this document will
at least hopefully help you be somewhat more secure (and we always appreciate feedback on
areas where further attention would be helpful).

3. "Is This Document Right For ME?"
Everyone comes to working with systems and networks from a different level of technical
expertise (and with different objectives).

To be comfortable with this document, you'll NEED to be technically savvy. If you're NOT a
technical person who likes to run his or her own system, this is not the right document for you.
We're explicitly assuming that you do NOT need a "control panel" environment, for example.

Similarly, if you're not interested in a Un*x-based approach using Debian Linux, perhaps
preferring MS Windows-based systems instead, this is also NOT the right document for you.
Our discussion will be framed around bringing up a Debian Virtual Private Server, and we're
also going to assume that you're working from a Mac laptop running the latest version of macOS
(and not a Microsoft Windows laptop).

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 7

4. "Which Specific Hosting Service Is This Writeup Keyed
To?"
There are many different hosting options out there, from tiny mom-and-pop independent shops
to huge corporate providers. Some may be excellent (but come at a premium prices). Others
may work hard to offer an acceptable service at a competitive price point. Still others might be
frustrating to use, with availability issues or oversubscription problems. Everyone's needs will be
somewhat different, which is why the market offers so many options. We want to respect that
range of options and remain "vendor neutral" except where we have no choice but to be more
specific. Factors we encourage you to review and consider when picking a VPS service:

● What operating system do we want to run? Does the provider in question OFFER that
option? For example, some vendors may not offer Debian at all, or they may offer
Debian 10 or 12, but not Debian 11. Ubuntu may be "close enough" (except when it
isn't).

● What applications do we want to support?

o Email? If so, will our provider allow us to send and receive port 25/TCP traffic?
Has their address space been widely abused? If so, will my IP start out heavily
blocklisted? Hosting email in such address space may not work very well.

o Do we want to serve web pages? If so, just static pages, or do we need to be
able to dynamic pages using a framework such as WordPress?

o What about other applications? For example, will the provider handle
authoritative DNS for our domains, or can I backup my system easily with a
provider-supported backup provider?

o Be sure to also consider any potential system overhead for any security
measures we anticipate running -- substantive applications (such as simple email
and web) may not require much in the way of resources, but some more
intensive security technologies may be a different matter.

● Given those applications, how big of a system do we need? In particular, think about
hardware requirements such as

o CPU cores: do we need four, or are two enough?

o RAM: is 2GB enough, or do we need 4GB or even more? We're going to strive to
have a configuration that will work on the smallest of virtual private servers,
needing no more than 512MB of RAM.

o Disk space -- most providers use solid state disk these days, but some may offer
NVMe storage (see https://en.wikipedia.org/wiki/NVM_Express) while others may
still have rotating disk, perhaps at bargain prices. Do we want RAID, or are plain
old disks "good enough?" How much disk is enough? Again, we'll try to minimize
needs and work in just 20GB of SSD.

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 8

o Data transfer limits per month (if any). Some providers may offer unlimited
network transfers; others may have a monthly cap. Some may even apply data
transfer limits to only one direction (typically outbound from the virtual private
server, with inbound traffic remaining unmetered).

● What will that package cost? Are costs constant over time, or does the provider offer an
initial "introductory rate" but then increase that price once you're "locked in?" Are there
discounts for prepaying multiple years in advance?

● Where will my server be physically located? Location will impact network performance
(since throughput's typically a function of latency and bandwidth-delay products), and
choice of location may also have implications for applicable laws and civil procedures.
Therefore, while it might sound "cool" to host your site somewhere "exotic" like Panama
or the Seychelles, somewhere in the United States or Canada might be a more practical
choice for most North Americans.

● How's the provider's network? Do they support both IPv4 and IPv6? Is their transit and
peering connectivity good, or are their links underprovisioned and congested during
peak load periods?

● How reliable is the provider? Do they have a well-established history? Do they seem well
positioned to continue, or are there worries about their viability as a going concern? How
do their uptimes look? Do they have a formal SLA (service level agreement), and what (if
anything) happens if they breach it?

● What do the company's terms of service (ToS), acceptable use policy (AUP), and privacy
policies look like?

● How's customer service? Do tickets get handled quickly and professionally?

You should be able to get unmanaged VPS service with full root access for between
$10-$20/month ($120-$240/year). The provider needs to offer Debian 11 (or at least Debian 10
or Ubuntu). We encourage you to do your own due diligence before picking a VPS provider.
(We'all also note that many providers have special promotional sale pricing from time-to-time, if
you're able to "time" your purchase). Some factors to consider in evaluating a potential VPS
provider:

● Providers with TOO-HIGH pricing: You should be able to get a usable unmanaged
VPS for $20/month or less (in our opinion). Some providers may attempt to avoid a
race-to-the-bottom (and not market to "bargain hunters") by maintaining a minimum price
slightly ABOVE $20/month (such as perhaps $25/month). That's certainly their
prerogative (and you may decide you're fine with that approach), but we don't think you
need to pay an extra $60/year to get adequate unmanaged VPS service.

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 9

WAY-too-high pricing for unmanaged VPS service (such as 3-5X normal unmanaged
VPS service pricing) can be a sign you may have encountered a "bulletproof"
("complaints ignored") hosting outfit. (Don't conflate "bullet proof unmanaged VPS
hosting" at 3-5X normal prices with legitimate MANAGED VPS service at perhaps 2X
unmanaged VPS prices.)

● Providers with TOO-LOW pricing: This may seem counter-intuitive, but free (or nearly
free) providers still need to cover their costs somehow, right? So, what's their business
model? Some may badly oversubscribe their infrastructure; others may nickel-and-dime
you for required basic services after you purchase what turns out to be a stripped-down
intro package. Ultra-low cost or free providers may also lack the resources to fund a
responsive anti-abuse team. Look for reasonable prices.

● Providers with "non-transparent" pricing: Some sites may provide "pricing by
quotation" only. We'd exclude them because (in our opinion) they introduce too much
"friction" into what should be a simple price discovery and comparison process. VPS
hosting is neither high cost nor something so specialized that it makes sense for pricing
to be done one-off.

● "Shadowy" providers: You need to be able to know and trust your provider, just as
your provider should insist on knowing and trusting you, as their customer.
Unfortunately, some VPS providers may intentionally attempt to conceal or obfuscate
their identity. Other providers may attempt to "take a mulligan" by repeatedly renaming
their service in an effort to put troubling prior behaviors behind them (we've got no
problem with sites that have had legitimate merger and acquisition activity, our concern
lies with companies where NOTHING has changed EXCEPT the company's name).

● Providers with "Sketchy" customers: If a provider accommodates sketchy customers,
those customers can taint your site's reputation or make it hard for you to use your
server to send email. Indicators of providers with sketchy customers may include:

o Lax terms of service (including comments that "DMCA complaints will be
ignored," or a willingness to host undesirable behaviors such as web comment
spamming, even if email spamming is (theoretically) strictly forbidden.

o Blocklisting by Spamhaus (one VPS provider we considered and examined had
176 SBL listings at the time we checked!)

o Anonymous sign up options and anonymous payment channels (often featuring
crypto currencies)

o An ability for customers to temporarily get multiple IPv4 addresses from multiple
disjoint netblocks -- this may often be a sign that the customer is playing games
with IP reputation.

o Data centers located in regions where corruption is endemic (or governments
may be hostile to American interests).

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 10

5. "Why Debian Linux? Why not Ubuntu, Rocky/Alma Linux
or … Instead? Or FreeBSD, NetBSD, OpenBSD? Or…"
We had to pick some operating system, because file system layouts vary from operating system
to operating system, ditto package management tools and firewall options -- there's simply no
way to avoid it. We had to select SOMETHING.

As to why Debian -- we know that choice of distro (like selection of a religious denomination or
selection of a political party), can be an intensely personal thing, and good people can make
radically different decisions on this topic. ALL distros will have advantages and disadvantages,
but Debian is quite popular, community supported, stable, and known for remarkable quality
control (if perhaps having a reputation for being a bit "stodgy" and "conservative").

Debian's also the primary Un*x server operating system Farsight Security (now part of
DomainTools) has historically used. Then there's the fact that our focus today is on securing a
remote server environment, not a desktop workstation environment, so window manager and
desktop-related application considerations don't pertain. If our focus was different, we might
have made a different choice. We encourage you to review some of the many web pages
devoted to comparing and contrasting the various options.

Then there's the question of which version within a given distro. We've elected to use Version 11
(aka "Bullseye") of Debian for this document because it's the "old stable" version (released
August 14th, 2021 and supported for five years thereafter).

It's minimum recommended configuration is just 512MB of RAM (see
https://www.debian.org/releases/bullseye/amd64/ch03s04.en.html), and thus our modest target
system configuration would be compatible. "Bookworm," the current stable vesion of Debian,
needs an absolute minimum of 1024MB of RAM. (see
https://wiki.debian.org/DebianEdu/Documentation/Bookworm/Requirements).

We could also have selected a really old legacy version, or a
bleeding-edge-still-under-development version, but neither of those would have felt right for this
project.

The Linux kernel (see https://www.kernel.org/category/releases.html) we're
using for this example is:

$ uname -a
Linux stsauver.com 5.10.0-23-amd64 #1 SMP Debian 5.10.179-2

(2023-07-14) x86_64 GNU/Linux

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 11

This is as we want since 5.10.179-2 was listed as the most recent security release for Bullseye
as of the time this document was prepared per
https://security-tracker.debian.org/tracker/source-package/linux

Nonetheless, if you're a long-time proponent of some other operating system/version/kernel we
totally get and respect that -- your system, your choice. Many of the steps described below may
also apply generally to your environment, albeit with system-specific differences you'll need to
sort out yourself.

6. Assumptions: We're Securing a System WITH Network
Connectivity
Your system likely won't exist in isolation, and probably will be more-or-less directly connected
to the public Internet. We're going to assume that:

● Your provider has supplied you with a new VM with a fresh install of Debian 11,
probably with cloud-init (see
https://cloudinit.readthedocs.io/en/latest/)

● You have a regular (non-root) account and can remotely login to that account using
ssh (this might be with either a username and password initially, or with public key
authentication).

● You have the root password for the system and can "su" to root, or your non-root
account is set up to be able to use "sudo" for privileged administrative work.

● Your provider will supply an IPv4 address and an IPv6 prefix for your use, and
network access to your system will be up at the time the server is delivered to you

● You have (or will newly register) a domain for use on your system.

● Either your registrar or your hosting provider will handle authoritative DNS for your
domain; you've listed their name servers when you registered your domain; you've at
least got an "A" record pointing at your server; and you can add additional DNS
records as may be required.

● You've got a full backup so that if something goes catastrophically wrong with the
following, you can always roll back to that. Let's get now get started with everything
else on our "to-do list."

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 12

II. AUTHORITATIVE DNS

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 13

7. Verify Your System's Authoritative DNS Entries Are
Present and Correctly Configured

You and other visitors will rely on authoritative DNS entries to reach your site. We're going to
assume that you've already set up at least the basics for your domain's zone, and you're ready
to check that setup. We like and recommend the IIS.SE Zonemaster site for checking your
authoritative DNS:

https://zonemaster.iis.se/en/

Since we're planning to use both IPv4 and IPv6, be sure to check the option to review BOTH
protocols while at that site.

If your domain is example.com, your IPv4 address is 198.51.100.48, and your IPv6 address is
2001:DB8::90, you might create the following records for your domain:

example.com A 198.51.100.48
example.com AAAA 2001:DB8::90
example.com MX 10 mail.example.com

mail.example.com A 198.51.100.48
mail.example.com AAAA 2001:DB8::90

www.example.com A 198.51.100.48
www.example.com AAAA 2001:DB8::90

A Note About Data Specific to Your Site and Placeholder Examples Show in This Document:
From time to time during this writeup, we'll need to refer to things specific to your new server
such as your domain name or your IPv4 or IPv6 address. Those values will obviously be unique
to each installation. To emphasize the fact that the values we're showing are JUST EXAMPLES
and will need to be replaced with ACTUAL VALUES FOR YOUR SITE, we're bolding, italicizing
and underlining them as shown above. DO NOT ACTUALLY USE THOSE bolded, italicized and
underlined values as-is! Replace them with the ACTUAL VALUES FOR YOUR OWN VPS!

8. DNSSEC Signing Your Zone?

Most top level domains (TLDs) now support DNSSEC. Assuming your domain's TLD supports
DNSSEC signing, you may want to use DNSSEC to protect your domain against cache
poisoning attacks. (The potential downside? If you mess up signing your zone or let your keys

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 14

expire, your domain may become unreachable by those who validate DNSSEC signatures.)
Having DNSSEC enabled for your zone would also let you use DANE and other technologies
that depend on the availability of a secure zone. However, we are NOT going to show DNSSEC
signing for your own zone in this document because at least some VPS providers may not
readily support DNSSEC signing for customer zones. If you have DNSSEC-signed your zone,
you should check that your DNSSEC signing status is correct with:

https://dnsviz.net/

We'll cover DNSSEC validation of other people's DNSSEC-signed zones in the recursive
resolver section of this guide.

A Note Before Proceeding Around Command Prompts: Virtually all of the work discussed in this
paper requires administrative ("root") privileges. This level of access can either be requested on
a command-by-command basis (by prefixing commands with sudo), or you can become root
for the session (by using su -).

Whichever approach you employ, when it's appropriate, we'll prefix the commands being run
with a hash mark (#). The hash mark will normally be shown unbolded below because your
system prints it out, it's NOT part of what you type in. It's just a sign that you're working with root
privileges, and should be careful!

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 15

III. SSHD: REMOTE ACCESS TO YOUR SERVER

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 16

9. ssh with ed25519-sk keys (FIDO/U2F)

In the bad old days, remote logins happened using telnet plus a username and an
often-quite-short password -- very insecure!

● Anyone on the network path between your local terminal and your server could have
sniffed your unencrypted username and password as it passed over the wire. "Game
over" (from a security point of view) if/when that happened!

● If sniffing wasn't a big enough problem, short passwords were another significant
vulnerability: short passwords could be attacked via dictionary attacks or via "brute force"
attempts to login (e.g., an attacker could try logging in with all possible passwords).

ssh is a vast improvement. One way it helps is by encrypting all your network traffic. ssh can
also help harden your auth process -- some of you may still use SSH with password
authentication, but ssh supports far-more-secure public key authentication, too. On the other
hand, since ssh is what virtually everybody uses for remote access to servers, it's also a popular
focus for attacks, so we'll want to do whatever we can to harden it against remote attack
attempts.

As part of that, we're going to use ed25519-sk format ssh public/private keys. OpenSSH
announced support for this key format in OpenSSH 8.2 around February 2020 (see
https://www.openssh.com/txt/release-8.2 at "FIDO/U2F Support"; see also "OpenSSH now
supports FIDO U2F security keys for 2-factor authentication" at
https://thehackernews.com/2020/02/openssh-fido-security-keys.html). ed25519-sk keys
combine the cryptographic advantages of ed25519 (see https://ed25519.cr.yp.to/) with support
for one-touch hardware tokens. They make it easy for us to protect our OpenSSH logins using
MFA.

We're going to use Yubikeys (https://www.yubico.com/) for our "smart keys." They're
secure, convenient, robust, proven and relatively affordable. [Yes, other security key alternatives
may also work, but we didn't want to get distracted by buying and testing a ton of different
hardware tokens. If you're using a non-Yubikey hard token for ssh ed25519-sk keys, we'd love
to hear about your experiences, good or bad.]

"Did You Say YubikeyS, Plural, As in MORE THAN ONE?" YES. Despite their legendary
physical toughness, you MUST purchase and configure at least TWO. If you set up your system
to REQUIRE multifactor authentication (but do so only for ONE Yubikey), and then something
bad happens and you accidentally lose or destroy your one-and-only "magic" authenticator, you
may be PERMANENTLY LOCKED OUT (unless you've retained the ability to remotely access
your host console out-of-band or you have a friend or colleague who also has root access who
can help you install a new key). You REALLY want to buy AT LEAST TWO!

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 17

"Which Sort of Yubikeys Should I Get?" Simplest rule: buy a current generation Yubikey 5
that fits the ports on the laptop you use -- USB-A, USB-C, Lightning, etc. (Do NOT purchase a
FIPS 140-2 Yubikey for this application.)

Confirm That Your Yubikeys Run Supported Firmware

● Install the Yubikey Manager app on your Mac:
https://www.yubico.com/support/download/yubikey-manager/

● Check each of your Yubikeys to ensure that they're running firmware 5.2.3 or later (as
required for ed25519-sk key format
per
https://developers.yubico.com/SSH/Securing_SSH_with_FIDO2.html
)

● Older Yubikeys (such as the Yubikey 4 shown below) won't be able to use ed25519-sk
but can at least use ecdsa-sk. REALLY old Yubikeys (such as the Yubikey Standard
show below) can't even do ecdsa-sk, and should be replaced.

We'll now show some screenshots from the Yubikey Manager. Two are for different Yubikey 5's
running firmware 5.4.3 (fine for ed25519-sk). One's from a Yubikey 4 (which can at least handle
ecdsa-sk). Finally, one's from a really old Yubikey Standard that needs replacing. Note that
different generations of Yubikey may superficially look quite similar, so be sure to explicitly
check your devices.

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 18

Picking the Right Yubikey "Recipe:" If you attempt to research integration of Yubikeys with
ssh yourself, be prepared to run into multiple "radically-different-looking recipes." All will talk
about using OpenSSH with Yubikeys, but beyond that you may see little commonality between
those recipes.

This complexity arises in large measure because of Yubikeys' flexibility (see
https://developers.yubico.com/SSH/). In THIS document we're explicitly NOT going to use
"yubico-pam" mode (see https://developers.yubico.com/yubico-pam/) NOR will we use
"yubico-piv" mode (see https://developers.yubico.com/PIV/Guides/).

We WILL use FIDO2 Ed25519-sk public keys in "non-discoverable" form (see
https://developers.yubico.com/SSH/Securing_SSH_with_FIDO2.html).

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 19

10. Creating ed25519-sk Keys

Ensure you have the latest OpenSSH and Fido2 libraries on both your workstation and your
server (we'll assume you have some sort of initial remote login access to it, even before
installing ssh (or improving) your server's initial default ssh installation):

● Mac: $ brew update
$ brew upgrade
$ brew install openssh
$ brew install libfido2

● Debian: # apt update
apt upgrade
apt install openssh-server
apt install libfido2-1 libfido2-dev libfido2-doc fido2-tools

Now insert your Yubikey into your Mac, open a local Terminal window, and enter:

$ ssh-keygen -a 500 -t ed25519-sk -f ~/.ssh/id_ed25519_sk -C
"ed25519_sk for keyring"

Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in

/Users/jsmith/.ssh/id_ed25519_sk
Your public key has been saved in

/Users/jsmith/.ssh/id_ed25519_sk.pub
The key fingerprint is:
[etc]

Repeat this for any other Yubikeys (obviously use different filenames, such as
id_ed25519_sk_2, id_ed25519_sk_3, etc)

"Decoding" the arguments to the above command (you can "play along at home" by looking at $
man ssh-keygen on your Mac):

Argument

-a 500

-t ed25519-sk

-f ~/.ssh/id_ed25519_sk

-C "ed25519-sk for keyring"

Purpose

"[…] KDF (key derivation function, currently
bcrypt_pbkdf(3)) rounds used. Higher numbers result in
slower passphrase verification and increased resistance to
brute-force password cracking (should the keys be stolen).
The default is 16 rounds."

"Specifies the type of key to create. […]"

"Specifies the filename of the key file."

"Provides a new comment."

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 20

NOTE: Some people may decide to skip using a password for their key if they're confident that
their Yubikey gives them adequate protection.

CAUTION: If you DO decide to use a passphrase on your key, DON'T forget it, because it
CAN'T be recovered if lost or forgotten.

CAUTION: If you supply a filename for your new key and that filename is ALREADY being
used, you may be asked to confirm that you want to overwrite those files. Generally, DO NOT do
that -- destruction of your old keys may lock you out of other systems that expect you to still
have those keys available! Pick a unique NEW filename instead!

CAUTION: If you're using something OTHER THAN a Debian 11 ("Bullseye") server, confirm
that ed25519-sk format keys are supported on the target server environment (some server or
cloud environments may not yet support them, see for example
https://learn.microsoft.com/en-us/troubleshoot/azure/virtual-machines/ed25519-ssh-keys)

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 21

11. Protecting Your ssh Private Key on Your Local
Workstation

Because of the sensitivity of your ssh private key, double check that your workstation's
directory's protections are appropriate (there should be no "group" or "other" access):

$ ls -ld ~/.ssh
drwx------ 32 jsmith staff 1024 Jan 30 14:55 .ssh

If your ~/.ssh directory's permissions don't look as shown above in the bold green text, fix
them with:

$ chmod 0700 ~/.ssh

Recheck the permissions to ensure that they are correctly set.

Now check the file permissions on the id_ed25519_sk private key file we created. The
associated .pub file is basically fine as long as it isn't world or group WRITEABLE, but the
associated private key file MUST NOT BE WRITEABLE OR READABLE BY ANYONE
EXCEPT THE USER HIM OR HERSELF:

$ cd ~/.ssh

$ ls -l id_ed25519_sk*
-rw------- 1 jsmith staff 561 Jan 30 14:48 id_ed25519_sk
-rw-r--r-- 1 jsmith staff 145 Jan 30 14:48 id_ed25519_sk.pub

If those files have incorrect permissions, fix them with:

$ chmod 0600 ~/.ssh/id_ed25519_sk
$ chmod 0644 ~/.ssh/id_ed25519_sk.pub

Repeat for any additional keys you created. If you had to tweak permissions, recheck them for
correctness after doing so.

12. Getting Your new ed25519-sk Public Key(s) up Onto Your
New Server

Your initial public key may get uploaded and installed on your new VPS as part of the
provider-specific server setup process, or you may start off with conventional password
authentication, meaning you'll then need to upgrade to public key authentication yourself.

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 22

● The "upload and install as part of the provider-specific setup process" will vary from
provider to provider. See your provider's documentation for details of if/how you can
upload ssh keys during provisioning for your VPS.

● The "start with password authentication and then upgrade to public key authentication"
process typically relies on use of the ssh-copy-id command:

$ ssh-copy-id -i ~/.ssh/id_ed25519_sk.pub jsmith@example.com

If you created key pairs for multiple Yubikeys, repeat this step for any backup keys.

• Sometimes the ssh-copy-id command may fail to work. If that happens, ssh into your
server using your regular (non-root) username and password and copy-and-paste the
contents of ~/.ssh/my_id_ed25519_key.pub from your Mac into
~/.ssh/authorized_keys on the new server.

If you're using multiple Yubikeys, also cut and paste the other public keys (for your
backup Yubikeys) into the ~/.ssh/authorized_keys file on your new server, one
per line.

Check to make sure this file is not writable by anyone except the user him- or herself.

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 23

13. Configuring Your Mac's ssh Client to Use the New
ed25519-sk Key Pair for the New Remote Server

Using your favorite editor on your local workstation edit ~/.ssh/config (add the following
lines at the top, then save and exit):

host example.com
User jsmith
IdentityFile ~/.ssh/id_ed25519_sk

IdentityFile ~/.ssh/id_ed25519_sk_2
IdentityFile ~/.ssh/id_ed25519_sk_3

← substitute your new server's name
← substitute your username on the new server
← primary key
← backup key
← tertiary key

If you eventually want to use one of your backup keys, comment out the primary key and
uncomment a backup key.

14. Test and Confirm That Your New ed25519-sk ssh Keys
Actually Work

CAUTION: IT IS ABSOLUTELY CRITICAL THAT YOU CONFIRM YOUR NEW KEYS WORK
BEFORE REMOVING ANY OLD KEYS FROM THE AUTHORIZED KEYFILE ON THE
SERVER!

ALSO NOTE: When using your Yubikey, the Yubikey MUST be already in the computer, you
WON'T be prompted to insert it!

When using ed25519-sk keys, you WILL be prompted to "confirm user presence" when logging
in. That's geekspeak for "touch your Yubikey to authenticate." For example:

$ ssh jsmith@sample.com
Confirm user presence for key ED25519-SK SHA256: [etc]
[touch the Yubikey in the port]
User presence confirmed
[etc]

You should now be logged in. Yay! Log out.

Now test your backup Yubikey. Change ~/.ssh/config to point at your backup Yubikey.
Remove the primary Yubikey from you Mac and replace it with your backup Yubikey. Confirm
that you can use it to login with that one, too. Log out.

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 24

If you've got another backup Yubikey, tweak ~/.ssh/config, swap in the next Yubikey, and
confirm you can login with it, too. If everything's good, tweak your ~/.ssh/config back to
your primary key and store your backup keys somewhere safe, such as with your passport or
other important documents.

After a few days, once you've confirmed that all your Yubikey-enabled keypair's are fully
functional and working smoothly, you can remove any previous non-Yubikey public key from
~/.ssh/authorized_keys on the server. Just be sure you remove the RIGHT (non
ed25519-sk) KEYS!

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 25

15. Troubleshooting

"I Can't Connect at All!" Have you configured the sshd configuration with a port OTHER than
the default port 22? We haven't talked about that yet, but we will do so later. If you've already
done so, and you've got a firewall (such as ufw) running, that firewall may need to have a hole
opened for the OTHER port. In the root window you've still got open (you DID leave a root
window open, right?), and assuming you were going to use port 754 for sshd, try:

ufw allow 754/tcp

Then go to a new terminal window on your local system and try sshing in to the remote server
again. [We'll talk more about changing the port for sshd and using ufw later in this document]

"I Can Connect via ssh Fine When I'm On My Regular User Account, But Not When I'm
Root on my Local Workstation!"

Confirm who you're currently "running as:"

whoami
root

If you are indeed running locally as root, remember: direct remote root logins may already be
disabled on your VPS (and if not, we'll disable them later). So, if you tried just logging in by
saying ssh example.com, ssh will assume you want to login to the same account as you're
currently using, so you'd be (implicitly) trying to login to the remote host as root (which is (or
shortly will be) disabled).

However, even if you ARE explicitly trying to login to a regular user's remote account while root,
and you've correctly specified a user account by saying ssh jsmith@example.com, if you're
running as root, ssh will still try to use the root user's .ssh/config file, not the regular user
account's .ssh/config file. (and do you have the right alternative ssh port number specified
in the root user's .ssh/config file just as you do in the regular user's account, if you're using
a non-standard ssh port number?)

Note, too, that the root user's .ssh/ directory also likely won't have the private key that's
normally present in the regular user's .ssh/ directory for that system.

"Something Else Isn't Working Right…" You may want to look for clues on the workstation or
on the server or both.

● On the client side, try running ssh in verbose mode (for example $ ssh -vvv
jsmith@sample.com).

● On the server side (in your still-logged-in root window), check /var/log/auth.log for
any sshd-related entries that may give you a "lead."

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 26

"When Logging In, I See:

'sign_and_send_pubkey: signing failed for ED25519-SK
"/Users/jsmith/.ssh/id_ed25519_sk":

device not found
jsmith@sample.com: Permission denied (publickey).

That usually means "Your Yubikey isn't plugged in." Plug it in and try it again.

"My Old Yubikey Can't Use ed25519-sk!"

You could try using ecdsa-sk instead of ed25519-sk, but a better idea would be to replace the
old key with a pair of current keys that can support ed25519-sk. Alternatively, you may decide
that password protected ed25519 keys (completely without security key MFA protection) are
strong enough on their own WITHOUT using Yubikey FIDO/U2F.

We're now going to harden our sshd configuration, beginning with editing our /etc/ssh/sshd.conf
file.

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 27

16. An Aside: Fixing Default vi/vim Options in /etc/vim/vimrc

Before editing our sshd config files, we might want to adjust some vi/vim default settings,
particularly settings that may prevent normal "Mac-style" cut-and-paste operations. If you like
how vi/vim works by default in Debian, that's fine, you can skip the following. However, if vi/vim
ISN'T working the way "plain vi/plain vim" classically "should work," you might want to try the
following settings for a "more traditional" vi/vim environment. Become root, then edit
/etc/vim/vimrc

" make vim more vi-compatible
set compatible

" disable mouse support (vi should NOT try to be a GUI editor!)
set mouse=
set ttymouse=

" disable filetype-specific behaviors
filetype off
filetype plugin off
filetype indent off
syntax off

" use basic (rather than "fancy") search
set noincsearch
set nohlsearch
set noignorecase
set nosmartcase

" look-and-feel items
colorscheme default
set title
set titlestring=%t
set showmode
set noruler
set nospell
set nowrap
set noautoindent
set nonumber
set nocursorline
set nocursorcolumn

" prevent $VIMRUNTIME/defaults.vim from being loaded.
let skip_defaults_vim = 1

Save the configuration file and try editing with vi or vim -- do things feel a "little more normal"
now? If so, you're ready to tackle tweaking /etc/ssh/sshd_conf

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 28

17. Tweaking /etc/ssh/sshd_config to Harden the
Server's sshd Configuration

Virtually all "securing ssh" tutorials include recommendations around tweaking the server's
/etc/ssh/sshd_config file, so we'll discuss it, too. BE CAREFUL. Tweaking
/etc/ssh/sshd_config MAY increase sshd's security (OR incorrect tweaks may end up
locking you out or leaving you insecure rather than more secure). Before implementing
anything in this particular section, please note the following key points:

● The following tweaks are just suggestions for your consideration. Ultimately, YOU must
take responsibility for any changes you make to the default settings. We urge you to
PERSONALLY RESEARCH ALL CHANGES before implementing them. One description
of settings can be seen at https://www.ssh.com/academy/ssh/config

● Keep a pristine copy of your original configuration file as a backup. You may also want to
save a copy of the output from:

sshd -T

● Keep a root window open until you've confirmed that everything's working the way you
expect it to.

● After making changes (but before restarting sshd), syntax check
/etc/ssh/sshd_config for "sanity:"

sshd -t
Resolve any errors or warnings from the above command, THEN and ONLY THEN

proceed to...

systemctl restart sshd

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 29

Table 3. /etc/ssh/sshd_config Settings

Setting Explanation or reference
PubkeyAuthentication yes Public key authentication MUST be allowed!

PasswordAuthentication no
Disable password-based authentication.
Important: Only do this after public key auth is verified to be
running 100% OK!

Protocol 2 Only use sshV2. See https://www.kb.cert.org/vuls/id/684820

Port [pick a port other than 22]

Network scanners may still discover (and try to attack) your new
non-standard port, but it may still lower the noise level by an order
of magnitude or two.
If you DO choose to use a different port, keep a root window open
until you're sure everything's working the way it should! Other
things to remember:
(a) Make a note of the server port number you pick!
(b) On the server, as root, be sure to let the ssh traffic in past the
firewall:
ufw allow my_ssh_port_number/tcp
(b) On the client, in ~/.ssh/config, set Port my_port_number for
the correct Host
(c) Test and check that you can login to the new server on the
new port number
(d) If you're using fail2ban (we won't be), its port number info
would also need to be adjusted (if you were surgically targeting
just the default port 22 only)

PermitRootLogin no Require regular user login THEN su or sudo (instead of direct
remote root login)

PermitEmptyPasswords no Disallow ssh login to any accounts that lacks a password
StrictModes yes Require correct permissions on public/private key files

LogLevel VERBOSE Enhance the amount of logging to allow auditing of ssh key usage
by users

ChallengeResponseAuthentication no Disable unused auth/access method
KerberosAuthentication no "
GSSAPIAuthentication no "
HostbasedAuthentication no "
X11Forwarding no Disable unneeded forwarding/tunneling
AllowAgentForwarding no "
AllowTcpForwarding no "
PermitTunnel no "
GatewayPorts no "

IgnoreRhosts yes Keep .rhosts and .shosts files from being used for
HostbasedAuthentication

IgnoreUserKnownHosts yes Keep ~/.ssh/known_hosts from being used for
HostbasedAuthentication

PermitUserEnvironment no Avoid untrustworthy user env settings (also comment out any
AcceptEnv lines)

Compression no https://cisofy.com/lynis/controls/SSH-7408/
MaxAuthTries 2 "

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 30

TCPKeepAlive no "

sshd Setting We're Not Suggesting
You Tweak Explanation/Discussion

AllowUsers [config]
Not relevant to this configuration (we already have a limited
numbers of users)

LoginGraceTime 20
Prevent attackers from leaving connections open in resource
exhaustion attacks

HashKnownHosts Yes
Only relevant if the server is compromised and attackers are
trying to pivot to other hosts by leveraging trust relationships.

ClientAliveCountMax 3
If this threshold is reached while client alive messages are being
sent, sshd will disconnect the client

ClientAliveInterval 300 Idle timeout: <N> seconds.
Banner [filename] Some jurisdictions may require banner notification to be provided

Reminder:

● Keep a root ssh window open on your server until you've confirmed that everything's
working the way you expect it to.

● After making changes (but before restarting sshd), check the /etc/ssh/sshd_conf
syntax for superificial "sanity:"

sshd -t
Resolve any errors or warnings from the above command, THEN and ONLY THEN

proceed to...

systemctl restart sshd

18. Hardening sshd's Technical Cryptography with
ssh-audit

In addition to major options, sshd cryptography can use weaker (or stronger) ciphers.
ssh-audit does a nice job of identifying subtle sshd cryptographic weaknesses.

● Install ssh-audit on your Mac workstation with:

$ brew install ssh-audit

● Now run ssh-audit against your VPS (obviously substitute your actual host name for
example.com and substitute the port number you're actually using for sshd for the
illustrative value of 12345):

$ ssh-audit --verbose example.com -p 12345

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 31

● Cryptographic weaknesses may be highlighted in the output. Consider fixing those
issues on your server as described at
https://www.sshaudit.com/hardening_guides.html#debian_11

● Rerun ssh-audit from the workstation against the server to confirm that the previous
weaknesses have been fixed.

IV. PATCHING

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 32

19. We Now Have Secure Access to Our VPS via ssh -- Now
What? PATCH!

Now that we have secure ssh access to our VPS, we're ready to do more. Let's begin by
ensuring that our system is patched up to date. Let's begin by ensuring we have the right source
repositories configured in /etc/apt/sources.list

Options defined in https://wiki.debian.org/SourcesList
https://wiki.debian.org/DebianStable
deb http://deb.debian.org/debian bullseye main non-free
deb-src http://deb.debian.org/debian bullseye main non-free
https://www.debian.org/security/
deb http://security.debian.org/debian-security bullseye-security main
contrib non-free
deb-src http://security.debian.org/debian-security bullseye-security
main contrib non-free
https://wiki.debian.org/StableUpdates
deb http://deb.debian.org/debian bullseye-updates main contrib non-free
deb-src http://deb.debian.org/debian bullseye-updates main contrib
non-free
https://backports.debian.org/
deb http://deb.debian.org/debian bullseye-backports main contrib
non-free
deb-src http://deb.debian.org/debian bullseye-backports main contrib
non-free
https://wiki.debian.org/StableProposedUpdates
deb http://deb.debian.org/debian/ bullseye-proposed-updates main
contrib non-free
deb-src http://deb.debian.org/debian/ bullseye-proposed-updates main
contrib non-free

Eventually (if we keep going through this guide) we'll also want to have in
/etc/apt/sources.list.d/:

cat nginx.list
https://nginx.org/en/linux_packages.html#Debian
deb https://nginx.org/packages/debian bullseye nginx
deb-src https://nginx.org/packages/debian bullseye nginx

cat cisofy-lynis.list
https://packages.cisofy.com/community/#debian-ubuntu
deb https://packages.cisofy.com/community/lynis/deb/ stable main

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 33

Note that:

● In addition to the primary bullseye repository, we've also configured the -security,
-updates, -backports and
-proposed-updates repositories

● We've also asked for the main, contrib and non-free components (see
https://wiki.debian.org/SourcesList)

● Depending on the system's uses, you may have additional vendor repositories listed. We
show ones for nginx and lynis. We are NOT performing vendor pinning (for more on
pinning, see https://douglasrumbaugh.com/post/apt-pinning/)

● Speaking of lynis, if you don't need translation support (you don't need non-English
language support), please add a line to
/etc/apt/apt.conf.d/99disable-translations reading:

Acquire::Languages "none";

Now, ensure the required software packages are available:

apt install curl gnupg2 ca-certificates lsb-release
debian-archive-keyring

And you may need to install signing keys (beyond those in the debian-archive-keyring), at least
if downloading updates from nginx or cisofy vendor repositories:

apt-key is deprecated, but see
https://packages.cisofy.com/community/#debian-ubuntu
apt-key adv --keyserver keyserver.ubuntu.com --recv-keys
013baa07180c50a7101097ef9de922f1c2fde6c4
as shown at https://nginx.org/en/linux_packages.html#Debian
curl https://nginx.org/keys/nginx_signing.key | gpg --dearmor \
| sudo tee /usr/share/keyrings/nginx-archive-keyring.gpg
>/dev/null

Once the repositories and keys have been configured, update and upgrade your server's
software with:

apt update
apt upgrade

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 34

20. Enable Automatic Updates

Let's also enable automatic updates. Some may prefer NOT to do this, but we prefer not
having to remember to check and update:

apt install unattended-upgrades apt-listchanges

The configuration file /etc/apt/apt.conf.d/50unattended-upgrades should have at
least the following lines uncommented:

Unattended-Upgrade::Origins-Pattern {
"origin=Debian,codename=${distro_codename},label=Debian";

"origin=Debian,codename=${distro_codename},label=Debian-Securit
y";

"origin=Debian,codename=${distro_codename}-security,label=Debia
n-Security";
}
Unattended-Upgrade::Mail "jsmith@example.com";
Unattended-Upgrade::MailReport "on-change";
Unattended-Upgrade::Remove-New-Unused-Dependencies "true";
Unattended-Upgrade::Remove-Unused-Dependencies "true";
Unattended-Upgrade::SyslogEnable "false";
Unattended-Upgrade::SyslogFacility "daemon";
Unattended-Upgrade::Verbose "false";

And the configuration file /etc/apt/apt.conf.d/20auto-upgrades should have:

APT::Periodic::Update-Package-Lists "1";
APT::Periodic::Unattended-Upgrade "1";

Sometimes after automatic updates, you may be prompted in the auto-update email receipt to
reboot. Be sure to do so.

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 35

V. FIREWALL USING UFW AND IPSET

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 36

21. Enable ufw for Firewall Protection

Debian 11 has a number of firewall options. The default (and most common) firewall option is
ufw ("Uncomplicated Firewall"). There are some subtleties to this "uncomplicated" firewall option
that are sometimes overlooked, including:

● Ufw handles IPv4 and IPv6 traffic independently. On dual-homed systems with
connectivity via both IPv4 and IPv6, administrators may sometimes forget to ensure that
both address families have consistent firewall policies.

● When blocking traffic, traffic can be REJECTed or DROPed. Both are legitimate choices,
but it can be important (from a security point of view) that administrators pick the right
option (one discussion of the difference between the two can be seen at
https://www.chiark.greenend.org.uk/~peterb/network/drop-vs-reje
ct)

● Rule persistence: ufw is built on top of iptables, but there are important differences
between the two. For example, by default, iptable rules are NOT persistent ("will NOT
survive a reboot"), but users can install and use iptables-persistent to change
that if desired (or administrators can manually save and restore iptable rulesets). Ufw
rules, on the other hand, when added via the command line interface, will be persistent
by default.

● Rule ordering and processing: ufw evaluates rules sequentially, and stops after the first
match. For that reason, rule order matters, and specific exception rules should appear
before default/general-case rules. Many introductions to ufw fail to adequately stress this
point, or omit explaining how to use things like ufw insert 1 to prepend rules to the
top of the ruleset rather than just having them be postpended to the bottom of the ruleset
by default.

● Rule Scalability: Some sites may be interested in performing fine-grained filtering
involving a large number of IPs or CIDR netblocks. Attempting to do that in ufw via a
large number of "ufw deny from" rules will not go well. Fortunately, with the use of
ipset (and ipset-persistent), ufw can handle thousands of specific CIDR filters
with ease, as we'll show below.

● Ufw logging: Logging can be enabled or disabled. Some may find firewall logging
information to be just irritating noise (or even a vector for exhausting a system's disk
space its own right), while others couldn't imagine living without that intelligence.
Fortunately, ufw logging can be configured on or off to suit the admin's taste.

With that for context, here's what we'd suggest you consider trying for an initial ufw configuration
for your server. We'll reiterate here for the record that, as always, YOU are ultimately
responsible for whatever configuration you choose to deploy (or not deploy).

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 37

If necessary, install the required packages:

apt install iptables
apt install ipset
apt install ufw
apt install iptables-persistent
apt install netfilter-persistent
apt install ipset-persistent

Confirm that IPv6 is enabled in /etc/default/ufw:

IPV6=yes

Important: DO NOT reload or restart ufw yet!

Ensure that you've allowed ssh traffic inbound through the firewall to port 22/tcp with:

ufw allow ssh

OR if you're using a non-standard port for ssh (such as, hypothetically, port 754/tcp), allow
inbound traffic to that port:

ufw allow 754/tcp

Important: Keep a root window open to your server until you've confirmed that the server is
responding as expected.

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 38

If you're also going to run other services, such as an email server (normally SMTP listens on
port 25/tcp) or a web server (web servers normally offer http on 80/tcp and https on 443/tcp),
you may also want to take this opportunity to add rules for those services, too:

ufw allow 25/tcp
ufw allow 80/tcp
ufw allow 443/tcp

Confirm everything looks good (note: if you're using a non-standard ssh port, you should see it
listed in the following table, too):

ufw status
[…]
To Action From
-- ------ ----
22/tcp ALLOW Anywhere
25/tcp ALLOW Anywhere
80/tcp ALLOW Anywhere
443/tcp ALLOW Anywhere
22/tcp (v6) ALLOW Anywhere (v6)
25/tcp (v6) ALLOW Anywhere (v6)
80/tcp (v6) ALLOW Anywhere (v6)
443/tcp (v6) ALLOW Anywhere (v6)

If you've accidentally added a firewall rule you didn't intend to add, remove it. The easiest way to
remove a rule is by its number. Get rule line numbers with the ufw status numbered
command:

ufw status numbered
Status: active

To Action From
-- ------ ----

[1] 25/tcp ALLOW IN Anywhere
[2] 80/tcp ALLOW IN Anywhere
[3] 443/tcp ALLOW IN Anywhere
[4] 22/tcp ALLOW IN Anywhere
[5] 25/tcp (v6) ALLOW IN Anywhere (v6)
[6] 80/tcp (v6) ALLOW IN Anywhere (v6)
[7] 443/tcp (v6) ALLOW IN Anywhere (v6)
[8] 22/tcp (v6) ALLOW IN Anywhere (v6)

Then, to delete a single rule, enter:

ufw delete unwanted_rule_number

If you need to delete MULTIPLE rules, either "work upward from the bottom" (deleting the
bottommost rule that's to be deleted first, then deleting the next lowest one, etc., so that rule

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 39

shifts don't change the numbering of rules you may still be planning to prune) OR recheck ufw
status numbered to see the new rule numbering after every deletion gets made.

When everything finally looks good, reload ufw:

ufw reload
Firewall reloaded

Confirm that you're able to create a new ssh session from your laptop to the VPS.

Also confirm that you're seeing ufw log entries in /var/log/ufw.log -- if not (and you need
log data), enter:

ufw logging on

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 40

22. Configure ipset and ipset-persistent

Ufw is now up and running. Assume, however, that we've got a list of CIDR netblock sources
you're interested in blocking. If we try adding those as rules to ufw one-rule-at-a-time directly,
you'll find that process is (a) tedious and (b) doesn't work very well for a signicant number of
CIDRs (as in, "your system may become catatonic or impossible to login-to"). Let's use ipset
to scalably handle this, instead. We've already added the ipset and ipset-persistent
packages as part of getting set up in the previous section.

We'll need two ipset nethashes, one called cidr-blocklist (for IPv4 CIDRs), and a second
one called cidr-blocklist-ipv6 (for IPv6 CIDRs):

ipset create cidr-blocklist nethash
ipset create cidr-blocklist-ipv6 nethash family inet6

When created this way (with default values for hashsize and maxelem), those ipsets should
be able to accommodate up to 65536 rules. If you need to be able to handle more rules than
that, check out man ipset for details on how to tweak hashsize & maxelem

Once you've created those ipsets, populate them. For example (purely hypothetically), perhaps
you want to add rules blocking all connection attempts from China Telecom (AS4134). They
originate 704 IPv4 prefixes (as listed at https://bgp.he.net/AS4134#_prefixes), and
606 IPv6 prefixes (as listed at https://bgp.he.net/AS4134#_prefixes6)

The first part of doing this is purely about building and loading the ipset rules…

● Using Firefox, copy and paste the IPv4 prefixes from the bgp.he.net IPv4 prefix tab table
into a file called temp.txt

● Use the Un*x awk command to keep only the first column from that file, sort and
uniquify (deduplicate) those results. Save the remains to a new file called temp2.txt:
$ awk '{print $1}' < temp.txt | sort -u > temp2.txt

Most of the results in temp2.txt will be CIDR prefixes, but there may also be some
country names or other miscellaneous text junk. Using your favorite text editor, remove
any lines (typically near the top or bottom) that aren't CIDR prefixes.

● Because the data we just collected is based on BGP routing data, we may be able to
minimize the number of rules we need for ipset by combining adjacent CIDR netblocks,
or by eliminating overlapping prefixes (for example, there may be a large covering route
plus a set of more specific prefixes -- we don't need both). We'll condense our list of IPv4
CIDRs with cidrmerge (see https://github.com/kfeldmann/cidrmerge):

$ cidrmerge < temp2.txt > temp3.txt

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 41

That takes us down from 704 CIDR netblocks to just 406 -- a nice savings!

$ wc -l temp2.txt temp3.txt
704 temp2.txt
406 temp3.txt

● Once again using our favorite text editor, add the following (including a literal space at
the end of the string shown) to each line in temp3.txt:

ipset add cidr-blocklist

temp3.txt will then look like:

ipset add cidr-blocklist 1.48.0.0/15
ipset add cidr-blocklist 1.50.0.0/16
ipset add cidr-blocklist 1.68.0.0/14
ipset add cidr-blocklist 1.80.0.0/13
ipset add cidr-blocklist 1.180.0.0/14
ipset add cidr-blocklist 1.192.0.0/13
ipset add cidr-blocklist 1.204.0.0/14
ipset add cidr-blocklist 14.16.0.0/12
ipset add cidr-blocklist 14.104.0.0/13
ipset add cidr-blocklist 14.112.0.0/12
ipset add cidr-blocklist 14.134.0.0/15
ipset add cidr-blocklist 14.144.0.0/12
ipset add cidr-blocklist 14.208.0.0/12
ipset add cidr-blocklist 27.16.0.0/12
ipset add cidr-blocklist 27.54.224.0/19
ipset add cidr-blocklist 27.128.0.0/15
ipset add cidr-blocklist 27.148.0.0/14
ipset add cidr-blocklist 27.152.0.0/13
ipset add cidr-blocklist 27.184.0.0/13
ipset add cidr-blocklist 27.224.0.0/14
ipset add cidr-blocklist 36.1.0.0/16
ipset add cidr-blocklist 36.4.0.0/14
ipset add cidr-blocklist 36.16.0.0/12
[etc]

Save that file. Run it by saying:

sh -x temp3.txt

This should run quickly, and add all the IPv4 prefixes to the ipset. Now run

netfilter-persistent save

● If you're dual homed, repeat the above process for the IPv6 prefixes. Things to note:

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 42

o The cidrmerge command we used for the IPv4 prefixes isn't "IPv6 aware", but
there are other similar packages that can be used, perhaps
https://github.com/zhanhb/cidr-merger (or you can just leave the IPv6 prefixes
unaggregated
-- there tends to be fewer of them, so merging/deduplicating them may not be as
big of a deal).

o Instead of prefixing these lines with ipset add cidr-blocklist
you'll want to prefix the IPv6 lines with ipset add
cidr-blocklist-ipv6

● If you want to confirm the rules you've just loaded into ipset, try:

ipset list cidr-blocklist
ipset list cidr-blocklist-ipv6

● To keep an eye on the total size of your rulesets (remembering your 65K rule default
limit):

ipset list cidr-blocklist | wc -l
ipset list cidr-blocklist-ipv6 | wc -l

The second part of this process is about connecting the ipset(s) with iptables (running
"underneath" ufw), making the rulesets persistent, and ensuring that
netfilter-persistent is routinely started (it reloads the ipsets at reboot);

iptables -I INPUT -m set --match-set cidr-blocklist src -j DROP
iptables -I FORWARD -m set --match-set cidr-blocklist src -j

DROP

ip6tables -I INPUT -m set --match-set cidr-blocklist-ipv6 src
-j DROP

ip6tables -I FORWARD -m set --match-set cidr-blocklist-ipv6 src
-j DROP

netfilter-persistent save

dpkg-reconfigure ipset-persistent
dpkg-reconfigure iptables-persistent

systemctl enable netfilter-persistent
systemctl start netfilter-persistent
systemctl status netfilter-persistent

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 43

23. Verify What's Open and Closed

Let's now confirm our firewall configuration using nmap. Begin by ensuring we have nmap
installed on our Mac workstation:

$ brew install nmap

NOTE: Please do NOT nmap or otherwise scan servers owned by others without the other
server-owner's permission. Scanning often serves as a reconnaissance step prior to an attack
and potential compromise, and will normally be viewed as hostile. As such, it may result in the
scanning IP (or even a larger network range) getting blocked, complaints to your provider, or
potentially even criminal "hacking" charges in some jurisdictions. You're normally going to be
fine scanning your own VPS running on a dedicated IP address, but please refrain from
scanning other people's systems or shared IP addresses.

We should now do a basic scan of our VPS to ensure the world sees our VPS the way we
expect. From our Mac laptop:

nmap -4 -sV example.com
Starting Nmap 7.93 (https://nmap.org) at 2023-02-11 14:02 PST
Nmap scan report for example.com (198.51.100.48)
Host is up (0.074s latency).
Other addresses for example.com (not scanned): 2001:DB8::90
Not shown: 100 filtered tcp ports (no-response)

Service detection performed. Please report any incorrect results at
https://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 68.42 seconds

In this case, using just a basic service discovery scan, the sshd server (which we'll assume
we're running on a non-standard port) wasn't seen. A more exhaustive search would likely have
detected it. Note, too, that we only scanned the IPv4 address for the server by default (we can't
scan both IPv4 and IPv6 at once).

Repeating the process with -6 to scan the IPv6 interface to the server:

$ nmap -6 example.com
Starting Nmap 7.93 (https://nmap.org) at 2023-02-11 12:30 PST
Nmap scan report for example.com (2001:DB8::90)
Host is up (0.076s latency).
Other addresses for example.com (not scanned): 198.51.100.48
Not shown: 100 filtered tcp ports (no-response)

Nmap done: 1 IP address (1 host up) scanned in 53.17 seconds

Let's move on.

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 44

VI. NTP

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 45

24. NTP (Network Time Protocol)

Accurate time is important for logging, multifactor authentication, and DNSSEC among other
things. Ideally, if we had roof access for a GPS antenna, we'd synchronize our server to
GPS/GNSS satellite time with a commercial hardware GPS time server or something like
https://github.com/domschl/RaspberryNtpServer [However, it's really not very realistic to expect
roof access for a $20/month VPS!]

Staying realistic, we're going to use NTP (Network Time Protocol) instead, see
https://support.ntp.org/Main/WebHome

Begin by confirming your time zone is set to UTC, like all good servers:

cat /etc/timezone
Etc/UTC

Install the ntp server:

apt install ntp
apt install ntp-doc

The ntp configuration file is at /etc/ntp.conf

Per https://www.ntppool.org/zone/north-america we're going to tweak it to use
these servers:

server 0.us.pool.ntp.org
server 1.us.pool.ntp.org
server 2.us.pool.ntp.org
server 3.us.pool.ntp.org

Restart the ntp service and ensure it's successfully running:

dpkg-reconfigure ntp
systemctl restart ntp
systemctl status ntp

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 46

Check the servers that are being used. Ours looked like:

ntpq -pn
remote refid st t when poll reach delay

offset jitter
===
===============
0.debian.pool.n .POOL. 16 p - 64 0 0.000

+0.000 0.000
1.debian.pool.n .POOL. 16 p - 64 0 0.000

+0.000 0.000
2.debian.pool.n .POOL. 16 p - 64 0 0.000

+0.000 0.000
3.debian.pool.n .POOL. 16 p - 64 0 0.000

+0.000 0.000
45.79.111.167 .INIT. 16 u - 64 0 0.000

+0.000 0.000
159.203.82.102 .INIT. 16 u - 64 0 0.000

+0.000 0.000
2607:7c80:54:3: 17.253.16.125 2 u 33 64 37 38.786

+0.281 0.363
45.55.58.103 .INIT. 16 u - 64 0 0.000

+0.000 0.000
-38.229.57.9 172.18.54.10 2 u 22 64 37 177.712
+16.303 0.549
-66.85.78.80 172.16.23.153 2 u 19 64 37 10.723
-3.097 1.648
-45.83.235.160 192.168.178.1 3 u 17 64 37 126.577
-2.389 16.239
-2602:fe2e:3:d:f 129.6.15.28 2 u 25 64 37 37.990
-1.897 0.760
-2603:c020:0:836 132.163.97.4 2 u 20 64 37 21.704
-0.011 1.762
+2620:2d:4000:1: 145.238.203.14 2 u 23 64 37 107.124
-1.574 1.843
-204.93.207.12 206.55.64.77 3 u 18 64 37 20.582
-11.085 1.879
+2001:4998:58:18 98.139.133.62 2 u 18 64 37 32.381
-0.252 1.439
*217.180.209.214 .GPS. 1 u 17 64 37 36.120
-1.425 1.476

Time should be relatively well sync'd now.

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 47

VII. Recursive Resolver Service ("DNS") Using
unbound

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 48

25. unbound (Recursive DNS Service with DNSSEC Support)

"Everything begins with DNS." This importance of that simple zen-like "koan" explains why we're
going to install the unbound recursive resolver service on the server, and do DNSSEC, rather
than just using a 3rd-party free recursive resolver. Official installation instructions are available
online at https://nlnetlabs.nl/documentation/unbound/howto-setup/

Begin by installing the unbound and the dnsutils packages:

apt install unbound
apt install dnsutils

Create the unbound group:

groupadd unbound

Create the unbound user (with a disabled shell):

useradd --shell=/usr/sbin/nologin --home-dir=/var/lib/unbound
--group=unbound unbound

You should see an entry in /etc/password that looks somewhat like this (your userid and
group id numbers may vary):

cat /etc/passwd | grep unbound
unbound:x:111:119::/var/lib/unbound:/usr/sbin/nologin

Ensure unbound.conf is configured as shown:

cat /etc/unbound/unbound.conf
server:

interface: 127.0.0.1
interface: ::1
access-control: 127.0.0.0/8 allow
access-control: ::1/128 allow
do-ip4: yes
do-udp: yes
do-tcp: yes
do-ip6: yes
prefetch: no
verbosity: 1
remote-control:

control-enable: yes

The following line includes additional configuration files
from the

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 49

/etc/unbound/unbound.conf.d directory.
include-toplevel: "/etc/unbound/unbound.conf.d/*.conf"

Confirm the configuration file is syntactically clean with:

unbound-checkconf
unbound-checkconf: no errors in /etc/unbound/unbound.conf

Start (or restart) the server and confirm it's running:

systemctl start unbound
systemctl status unbound

Now try a test query, explicitly forcing use of the locally-running server:

dig www.domaintools.com @127.0.0.1
[…]
;; ANSWER SECTION:
www.domaintools.com. 300 IN CNAME dhqm1qu93sq6.wpeproxy.com.
dhqm1qu93sq6.wpeproxy.com. 300 IN A 141.193.213.21
dhqm1qu93sq6.wpeproxy.com. 300 IN A 141.193.213.20
[…]

Looks good! If everything's running well, set your server to use the local unbound for all
queries. You'll normally do this in /etc/network/interfaces.d/50-cloud-init (or a
similarly named file in that directory).

Typically, you'll see a single dns-nameservers line listed in the "inet" (e.g., IPv4) stanza.
Duplicate that line in your text editor, commenting out the original (in case you ever want to
revert to it). Change the copy of that line to read:

dns-nameservers 127.0.0.1

Now look for an "inet6" stanza. It may also have a dns-nameservers line. If so, make sure
it looks like:

dns-nameservers ::1

Save the file and exit the editor.

Now let's enable DNSSEC. Begin by running the unbound-anchor command to retrieve a
copy of the DNSSEC root key.

unbound-anchor
chown unbound:unbound /var/lib/unbound/root.key
ls -l /var/lib/unbound/root.key

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 50

-rw-r--r-- 1 unbound unbound 758 Feb 9 03:06
/var/lib/unbound/root.key

Verify that the value in the local key file matches the hash at
https://data.iana.org/root-anchors/root-anchors.xml

Then do:

systemctl restart unbound

Finally, test unbound to ensure it is doing DNSSEC. You should see something like the
following:

$ dig com @127.0.0.1 +dnssec

; <<>> DiG 9.16.37-Debian <<>> com @127.0.0.1 +dnssec
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 59299
;; flags: qr rd ra ad; QUERY: 1, ANSWER: 0, AUTHORITY: 4,
ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags: do; udp: 1232
;; QUESTION SECTION:
;com. IN A

;; AUTHORITY SECTION:
com. 900 IN SOA a.gtld-servers.net.
nstld.verisign-grs.com. 1675914830 1800 900 604800 86400
com. 900 IN RRSIG SOA 8 1 900 20230216035350
20230209024350 36739 com.
fGrQCvR4XgJCjwsA/VknfsOsygrvaGacAvmdFCW9nsfUED1yYSYeQh1DYmNnsVe
s4gyyPnJL2jRL1oGBUBQiQEg9uJHVpt6KBT/SjFDvpocG8zIIF4Q2mfF0m4Pcln
NlXTDEW38CzLZm3izZR6PW+Kj6x80piytBgEggdI3L
5P4yH6ZHOLYTUjrebTxRiQHkETPPoZqwA62zGdfteJqVFg==
CK0POJMG874LJREF7EFN8430QVIT8BSM.com. 84011 IN NSEC3 1 1 0 -
CK0Q2D6NI4I7EQH8NA30NS61O48UL8G5 NS SOA RRSIG DNSKEY NSEC3PARAM
CK0POJMG874LJREF7EFN8430QVIT8BSM.com. 84011 IN RRSIG NSEC3 8 2
86400 20230215052257 20230208041257 36739 com.
tgh4dkHygg7rc4ENKPZxA9YBrsJedft9hKzYXY7hjjVm5MnMVGt9LU+885nkUqQ
Be4mEle1XMNX86VrYjXxJblo5YKo/lQlXqt7T0wGiGFX1oV9XpUz+xwMCGGLheC
o9G8loK7H1SYMS2GTr6ue5IypQ1hUd26/jP2Cx60Zh
USZyWD+i0PirxvNiLQp1nVsn4Q0b60K4egu5nS3WtE9gCQ==

;; Query time: 43 msec
;; SERVER: 127.0.0.1#53(127.0.0.1)
;; WHEN: Thu Feb 09 03:54:12 UTC 2023
;; MSG SIZE rcvd: 575

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 51

VIII. SMTP (Email) using Postfix (plus
SPF/DKIM/DMARC)

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 52

26. Installing the postfix MTA (SMTP) and alpine (a local
command line email client)

Email is the classic Internet application. There are many different mail server options, but we're
going to select postfix (instead of exim or sendmail or …) for our mail server.

Before starting, check https://multirbl.valli.org/ to see if your server's IPv4 or IPv6
addresses, or your domain name, have a history of abuse issues. If either the IP or domain
name are widely blocklisted, email from your system will likely run into deliverability problems.
You may want to see if your provider can move your system to more pristine IPs (and while
you're visiting with them, confirm that they're not routinely blocking all inbound or outbound
traffic on port 25/TCP).

To install postfix:

apt install postfix
apt install postfix-pcre

Postfix has a helpful setup script that gets us most of the way to where we want to be:

dpkg-reconfigure postfix

Select "Internet Site:"

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 53

Set the real name for your server:

Set the address for the actual system admin's account:

All outbound email will be produced locally:

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 54

To avoid a warning later from the lynis security auditing tool around
https://cisofy.com/lynis/controls/MAIL-8818/ , consider changing the banner
Postfix displays. Go to /etc/postfix/main.cf and ensure the banner has been simplified
to just:

smtpd_banner = $myhostname ESMTP

You may also want to do:

postconf -e disable_vrfy_command=yes

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 55

Confirm postfix is running:

postfix check
systemctl enable postfix
systemctl status postfix

Let's now install a command line email client, alpine (see
https://alpineapp.email/):

apt install alpine

Use alpine to try sending an email to another account you may have. Also send an email from
that other account to your account on the new server.

27. What About Maildir?

We opted to used the default Postfix spool format, Mbox (see
https://en.wikipedia.org/wiki/Mbox), but some may prefer to use Maildir instead (see
https://en.wikipedia.org/wiki/Maildir).

If you're interested in trying Maildir, please see

https://help.ubuntu.com/community/PostfixBasicSetupHowto#Setting_Postfix_Support_for_Mail
dir-style_Mailboxes

for configuration recommendations.

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 56

28. Adding SPF

Assuming basic postfix is now working well, let's setup email authentication in postfix using
SPF (see
https://en.wikipedia.org/wiki/Sender_Policy_Framework). SPF helps to limit who can "send
email as you," or to control "where email from your domain can originate." If you're a big New
York bank, for example, perhaps it would be good if someone at a cybercafé in South America
couldn't send phishing emails purporting to be you, eh?

We have two things to handle here:

● Creating and publishing our own SPF record (to limit who can send email as us
"outbound"), and

● Routinely checking the SPF records that others have published, for the email we receive
"inbound."

The right hand side (Rdata) of a typical TXT record for SPF (assuming you only send email for
this domain from your server) might look like:

"v=spf1 a mx ip4:your_IPv4_address ip6:your_IPv6_address ~all"

If you use third party mail senders or have other more complex requirements, SPF record can
become quite complex, particularly when including SPF records from other domains, but let's
not overthink this. Publish a TXT record that looks like the above for your domain in your
authoritative name servers, then check it with:

https://www.dmarcanalyzer.com/spf/checker/

Now we want to tell postfix to verify SPF for the incoming email it receives. There are several
steps to doing that. Begin by installing the required postfix policy package:

apt install postfix-policyd-spf-python

Now tweak two postfix configuration files, /etc/postfix/master.cf and
/etc/postfix/main.cf by following the recipe at
https://help.ubuntu.com/community/Postfix/SPF

At the bottom of /etc/postfix/master.cf, add the two lines:

policyd-spf unix - n n - - spawn
user=nobody argv=/usr/bin/policyd-spf

At the bottom of /etc/postfix/main.cf, add the following (we omit showing the remainder of
that file)

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 57

policyd-spf_time_limit = 3600s
smtpd_recipient_restrictions =

permit_sasl_authenticated
permit_mynetworks
reject_unauth_destination
check_policy_service unix:private/policyd-spf

Check and reload postfix:

postfix check
postfix reload

Confirm that you're still able to send and receive email OK with alpine. Watch
/var/log/mail.log for any issues.

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 58

29. Adding DKIM

DKIM (see http://www.opendkim.org/) uses cryptography to digitally confirm the origin
of messages. Again, there's an outbound and inbound component to be configured. We're going
to basically follow the approach outlined at
https://www.linuxbabe.com/mail-server/spf-dkim-postfix-debian-server
with some changes

We'll begin by installing the packages we need (if they aren't already installed):

apt install opendkim opendkim-tools dns-root-data

Add postfix to the opendkim group:

gpasswd -a postfix opendkim

Edit /etc/opendkim.conf, confirming the following lines are present and uncommented:

Canonicalization relaxed/simple
Mode sv
SubDomains no
Nameservers 127.0.0.1

Setup the key file directory:

mkdir -p /etc/opendkim/keys
chown -R opendkim:opendkim /etc/opendkim
chmod go-rw /etc/opendkim/keys

Edit /etc/opendkim/signing.table (replace example.com with the domain you're
mailing from):

*@example.com default._domainkey.example.com

Edit /etc/key.table (replace example.com wherever it occurs with the domain you're
mailing from):

default._domainkey.example.com
example.com:default:/etc/opendkim/keys/example.com/default.private

Edit /etc/opendkim/trusted.hosts (replace example.com with whatever domain you're
mailing from; note the leading dot on the domain name):

127.0.0.1

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 59

localhost
::1

.example.com

Let's now create our DKIM keys (replace example.com with your domain); note that the key
from default.txt may be broken into several chunks, but it's basically one long
alphanumeric public key, that's what the "blahblahblah" represents:

mkdir /etc/opendkim/keys/example.com
opendkim-genkey -b 2048 -d example.com -D

/etc/opendkim/keys/example.com -s default -v
chown opendkim:opendkim

/etc/opendkim/keys/example.com/default.private
chmod 600 /etc/opendkim/keys/example.com/default.private
cat /etc/opendkim/keys/example.com/default.txt
Default._domainkey IN TXT ("v=DKIM1; h=sha256; k=rsa;

p=blahblahblah")

Now add your DKIM public key to your domain's authoritative DNS as a new TXT record:

default._domainkey "v=DKIM1; h=sha256; k=rsa; p=blahblahblah"

Finish lashing together the DKIM connection to Postfix:

mkdir /var/spool/postfix/opendkim
chown opendkim:postfix /var/spool/postfix/opendkim

Edit /etc/opendkim.conf and ensure the Socket line looks like:

SOCKET local:/var/spool/postfix/opendkim/opendkim.sock

Edit /etc/postfix/main.cf adding at the end of that file:

Milter
milter_default_action = accept
milter_protocol = 6
smtpd_milters = local:opendkim/opendkim.sock
non_smtpd_milters = $smtpd_milters

Check for syntax errors, then reload Postfix:

postfix check
postfix reload

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 60

Check your DKIM setup with a public DKIM tester such as
https://www.dmarcanalyzer.com/dkim/dkim-checker/

When using that tester, the "selector" should be specified as "default" (w/o the quotes).

Now try sending an email to your server from a 3rd party that publishes an SPF record and does
DKIM signing, such as Gmail. Open the received message in alpine. While viewing it, hit h to
toggle headers. You should see headers that include a "Pass" for both SPF and DKIM:

Testing outbound -- now try sending an email TO your Gmail account. When you receive it on
Gmail, look at the message, then go to the "three vertical dots" menu (found to the right of
"Reply") and use "Show original." You should see "PASS" results as shown here:

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 61

30. Adding DMARC

While SPF and DKIM do a great job at what they do, they aren't perfect. For example:

● SPF normally focuses on the domain seen in the Return-Path: header -- that's a header
that users rarely look at, unlike the user-visible From:

● DKIM verifies that a DKIM-signed message has a valid signature. But what about
UNSIGNED messages? How should they be handled?

● What about situations where the use-visible From: is totally unrelated to the Return-Path:
domain (the domains aren't "aligned")? Surely that's an anomaly worth calling out, isn't
it?

● Wouldn't it be nice if you could get a report from sites that have seen attempts at
spoofing your domain?

DMARC (see https://dmarc.org/) fixes those issues, so let's get DMARC installed and running,
too.

apt install opendmarc

Now create your DMARC record. An easy way to do that is with
https://dmarcian.com/dmarc-record-wizard/

You're going to publish a new TXT record with this data in your domain's authoritative DNS. The
records's name should be _dmarc.example.com. (Remember to substitute your domain
name for example.com). Be aware that many authoritative DNS control panels may
automatically postpend your base domain -- if so, obviously use JUST _dmarc as the name).

After you get that TXT record published, validate it with
https://dmarcian.com/dmarc-inspector/

You should also be able to see a "DMARC Pass" tag in Gmail if you send a new message to
your gmail account, look at that message, and then check the Three Dot Menu Show Original:

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 62

31. Blocking Email from Entire TLDs

The Messaging, Malware and Mobile Anti-Abuse Working Group published a document entitled
"M3AAWG Recommendations for Preserving Investments in New Generic Top-Level Domains
(gTLDs)," see https://www.m3aawg.org/gTLDInvestments

It explained the risk that new gTLD owners face: if a domain becomes strongly associated with
abuse, some may simply refuse traffic from the entire gTLD.

One list of abused TLDs is the list that Spamhaus publishes:
https://www.spamhaus.org/statistics/tlds/

Let's assume that we've decided we no longer want to accept any mail from the (totally fictitious)
".oregon" TLD. We could create a file called /etc/postfix/reject_domains that includes
the line:

/.oregon$/ REJECT We reject all .oregon domains

If there were other TLDs we also didn't want, we could include additional lines of that sort in the
file, one for each unwanted TLD. After modifying that file, we'll create a dot db file of it by saying:

postmap reject_domains

Now we need to tell postfix to pay attention to our new rule (or rules). We'll do that by modifying
/etc/postfix/main.cf to include the line:

smtpd_sender_restrictions = check_sender_access
pcre:/etc/postfix/reject_domains

Note the "pcre" in that line. Using postfix's pcre capability requires that we have installed the
postfix-pcre package, which we did at the same time we installed the main postfix
package, so we should be fine (but if you see complaints about that pcre element, now you
know what you must have somehow overlooked).

And then we can check syntax for sanity and reload:

postfix check
postfix reload

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 63

IX. HTTP and HTTPS (Web) using NGINX

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 64

32. Installing and Configuring NGINX to Serve Unencrypted
Web Pages

The other "classic" Internet application (besides email) is http and https (the world wide web).
We're going to use nginx (https://www.nginx.com/) to handle those protocols. We'll
begin by installing the software we need:

apt install nginx

We've previously allowed port 80 and port 443 through ufw, but if you didn't do that step back
when, at least let 80/tcp through now:

ufw allow 80/tcp
ufw status

Ensure that /etc/nginx/sites-available/default looks like:

server {
listen 80 default_server;
listen [::]:80 default_server;
root /var/www/html;
index index.html index.htm;
server_name _;

location / {
First attempt to serve request as file, then
as directory, then fall back to displaying a 404.
try_files $uri $uri/ =404;

autoindex on;
}

}

Ensure that there's a config for your specific domain in /etc/nginx/sites-available. For
the domain example.com, you'd want /etc/nginx/sites-available/example.com to
look like:

server {
listen 80;
listen [::]:80;
root /var/www/html;
index index.html index.htm;
server_name example.com www.example.com;

location / {
First attempt to serve request as file, then

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 65

as directory, then fall back to displaying a 404.
try_files $uri $uri/ =404;

autoindex on;
}

}

Now symbolic link the /etc/nginx/sites-available/ files to
/etc/nginx/sites-enabled/

ln -s /etc/nginx/sites-available/default
/etc/nginx/sites-enabled/default
ln -s /etc/nginx/sites-available/example.com
/etc/nginx/sites-enabled/example.com

Check your configuration is sane with:

nginx -t
nginx: the configuration file /etc/nginx/nginx.conf syntax is

ok
nginx: configuration file /etc/nginx/nginx.conf test is

successful

Start nginx and confirm it is running:

systemctl start nginx
systemctl status nginx

Now try accessing a web page on your server using a web browser on your laptop using an
http: (NOT an https: URL). For example, if your web site is example.com, try going to
http://example.com/

You'll probably see a default page. To install real content, go to /var/www/html and create (or
upload) an index.html page.

While you're there, you might also want to create a robots.txt file explaining your site's
policy when it comes to being crawled by well-mannered search engines and similar bots. For
example, if you're okay with having all of your web pages crawled, robots.txt should look
like:

User-agent: *
Allow: /

If, on the other hand, you want your site to NOT get crawled AT ALL by well-mannered search
engines, change Allow to Disallow

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 66

Note that robots.txt policies are not technically "binding" -- ill-mannered search engines and
bots will often completely ignore robots.txt files, or even use exclusions found in them as
pointers to "particularly interesting" content to be retrieved FIRST.

Anyhow, let's now get and install a free Let's Encrypt TLS certificate so we can serve
TLS-secured pages over https.

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 67

33. Obtaining and Configuring Let's Encrypt Certificates for
TLS

We'll begin by installing certbot:

apt install certbot python3-certbot-nginx

Ensure that 443/tcp is allowed through the firewall:

ufw allow 443/tcp
ufw status

Now run the certbot (replace example.com with your actual domain):

certbot --nginx -d example.com -d www.example.com

After running that, certbot tweaks /etc/nginx/sites-enabled/example.com

server {
if ($host = www.example.com) {

return 301 https://$host$request_uri;
} # managed by Certbot

if ($host = example.com) {
return 301 https://$host$request_uri;

} # managed by Certbot

listen 80;
listen [::]:80;

root /var/www/html;
index index.html index.htm;
server_name example.com www.example.com;

location / {
First attempt to serve request as file, then
as directory, then fall back to displaying a 404.
try_files $uri $uri/ =404;

autoindex on;
}

}
server {

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 68

listen 443 ssl http2;
listen [::]:443 ssl http2;

root /var/www/html;
index index.html index.htm;
server_name www.example.com example.com;
ssl_certificate /etc/letsencrypt/live/example.com/fullchain.pem;

managed by Certbot
ssl_certificate_key /etc/letsencrypt/live/example.com/privkey.pem;

managed by Certbot

include /etc/letsencrypt/options-ssl-nginx.conf;
ssl_dhparam /etc/letsencrypt/ssl-dhparams.pem;

location / {
index index.html;
autoindex on;

try_files $uri $uri/ =404;
}

}

If you want to ensure that that configuration as shown is actually running:

nginx -t
systemctl restart nginx
systemctl status nginx

Now we just need to check and confirm that the certbot renewal service (to handle periodic cert
renewal) is also running:

systemctl status certbot.timer

If we want to watch the logs, check /var/log/nginx/access.log and
/var/log/nginx/error.log

A typical report for the above configuration, btw, as summarized by
https://www.ssllabs.com/ssltest/

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 69

We're pretty happy with that sort of "report card."

That said, we'll freely concede that the above configuration is not as fully locked down as it
could be. For a potentially better configuration, try the "Mozilla SSL Configuration Generator" at
https://ssl-config.mozilla.org/ That site will even help you to enable HTTP Strict
Transport Security
(https://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security) and
OCSP Stapling (https://en.wikipedia.org/wiki/OCSP_stapling)

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 70

X. Opportunistic TLS for Postfix MTA-to-MTA
Traffic

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 71

34. Configuring Opportunistic TLS for Postfix

Email historically was transferred over the Internet in plain text, but now it is much more
common for SMTP traffic to be encrypted with TLS. Postfix is one of the SMTP products that
supports this, see https://www.postfix.org/TLS_README.html

If TLS can't be successfully negotiated between the sending and receiving MTA, the message
will fall back and be transmitted in "clear text" (e.g., unencrypted)

Just like TLS for a web site, TLS for email requires a digital certificate. We've already obtained
certificates from Let's Encrypt for our web server, but we can use the same cert for SMTP, too.
Let's dive right in…

a) Ensure the hostname has been set:

postconf -h myhostname
example.com

If it isn't set, set it with:

postconf -e 'myhostname = example.com'

Now continue with the required settings (change example.com to be your real domain).
Settings are documented at https://www.postfix.org/postconf.5.html

postconf -e 'smtp_tls_security_level = may'
postconf -e 'smtp_tls_note_starttls_offer = yes'

postconf -e 'smtpd_tls_cert_file =
/etc/letsencrypt/live/example.com/fullchain.pem'
postconf -e 'smtpd_tls_key_file =
/etc/letsencrypt/live/example.com/privkey.pem'
postconf -e 'smtpd_tls_security_level = may'
postconf -e 'smtpd_tls_received_header = yes'
postconf -e 'smtpd_tls_loglevel = 1'

postfix check
postfix reload

Check to see if postfix is now offering to do STARTTLS for inbound email coming to your
server (in this case, yes, yes it is):

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 72

telnet localhost 25
ehlo localhost
[…]
250-STARTTLS
[…]
QUIT

All's good in terms of opportunistic TLS for inbound email.

Now let's check the TLS status of outbound email. Use your server to send a test email to
some gmail.com account you control. While viewing that test email, go to the "Three Vertical
Dots Menu" (over next to the right of Reply) and do "Show Original." While viewing the raw
message, look for the "handoff host" in the Received: header where your domain connects to a
google.com host for the first time.. For example:

Received: from example.com ([IP_address]) by mx.google.com with ESMTPS
id [identifier here]

for <user_here@gmail.com> (version=TLS1_3
cipher=TLS_AES_256_GCM_SHA384 bits=256/256);

[etc]

All's good outbound, too!

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 73

XI. Malware

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 74

35. Scanning for Malware

While malware is less of a problem on Un*x systems than on MS Windows hosts, it can't be
completely disregarded. One discussion of Debian anti-malware tools is
https://www.debian.org/doc/manuals/securing-debian-manual/ch08s08.en.
html ("Antivirus Tools.")

Normally we'd suggest running ClamAV, but if you're on a very small VPS (e.g., <= 512MB of
RAM), you'll likely find it infeasible to run ClamAV (https://www.clamav.net/), even just in
clamscan one-off mode. The problem is that running ClamAV, even with the default rules (to
say nothing of additional 3rd-party rules), require more RAM than we have on a very small VPS,
see for example
https://unix.stackexchange.com/questions/114709/how-to-reduce-clamav-
memory-usage

Fortunately, chkrootkit (http://www.chkrootkit.org/), works fine:

apt install chkrootkit

When you run chkrootkit, you should see something like:

chkrootkit
ROOTDIR is `/'
Checking `amd'... not
found
Checking `basename'... not
infected
Checking `biff'... not
found
[lots more output elided here]

Hopefully, nothing interesting will be found!

Let's now move on to also try rkhunter (https://rkhunter.sourceforge.net/).
We'll install it with:

apt install rkhunter

Before running rkhunter, ensure /etc/rkhunter.conf is configured. I'd suggest:

MAIL-ON-WARNING=root
AUTO_X_DETECT=0
ALLOW_SSH_PROT_V1=0
ENABLE_TESTS=ALL

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 75

DISABLE_TESTS=suspscan hidden_ports hidden_procs
deleted_files packet_cap_apps apps
SCRIPTWHITELIST=/usr/bin/egrep
SCRIPTWHITELIST=/usr/bin/fgrep
SCRIPTWHITELIST=/usr/bin/which
SCRIPTWHITELIST=/usr/bin/ldd
SCRIPTWHITELIST=/usr/sbin/adduser
ALLOWHIDDENDIR=/etc/.java
PASSWORD_FILE=/etc/shadow

After ensuring the config file is propertly configured, update the rkhunter properties with:

rkhunter --propupd
[Rootkit Hunter version 1.4.6]
File updated: searched for 179 files, found 143

And then run rkhunter:

rkhunter --check --skip-keypress
[LOTS of output elided here]

System checks summary
=====================

File properties checks...
Files checked: 143
Suspect files: 0

Rootkit checks...
Rootkits checked : 502
Possible rootkits: 0

Applications checks...
Applications checked: 3
Suspect applications: 0

The system checks took: 2 minutes and 43 seconds

All results have been written to the log file:
/var/log/rkhunter.log

No warnings were found while checking the system.

Note: Arrange RELIABLE BACKUPS of your VPS. If you become infested with malware, clean
backups will be critical to your recovery.

Backup service will often be offered in a provider-dependent way, either bundled in the basic
VPS monthly charge (or offered as an extra-cost option). Ensure you understand the terms of

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 76

use for those backups. Can you easily restore individual files (perhaps from a snapshot), or are
those backups merely meant for wholesale restoration of your entire site after a critical incident
(such as a disk failure)?

You may also want to understand how (or IF), those backups can be used to export a copy of
your server to an alternative hosting provider, should your current provider go out of business,
or you simply decide you want to change providers. If there is any doubt about that capability,
consider saving portable compressed tar achives to offline media you personally control.

In these days of significant ransomware threats, it is hard to overstate the value of multiple
generations of solid backups (and/or snapshots). Backups can be critically important for even
small VPS sites.

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 77

XII. System Auditing Tools

Exactly.

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 78

36. Lynis

Finally, let's also run lynis (https://cisofy.com/lynis/), another open source
security auditing tool, against our VPS.

apt install lynis

Once installed, we can run a scan:

lynis audit system --quick
[Lynis 3.0.8]

[…]
-[Lynis 3.0.8 Results]-

Great, no warnings

Suggestions (39):
[suggestion details omitted here]

Not that the suggestions from lynis are often both detailed and (at times) technically esoteric.
As an initial goal, we'd suggest prioritizing elimination of any warnings that lynis may identify.
Some of the more esoteric suggestions may require substantial work to address, or may have
side effects, so be sure to carefully research, plan, and test any changes before deploying them.

Some might want to look at /etc/sysctl.conf settings next. An approachable introduction
is "Linux Kernel /etc/sysctl.conf Security Hardening,"
https://www.cyberciti.biz/faq/linux-kernel-etcsysctl-conf-security-ha
rdening/

Those who've licensed the CIS benchmarks (or strictly non-commercial users) who want a
fine-grained guide to detailed hardening of Debian Linux 11 should consider careful review of
the "CIS Debian 11 Linux Benchmark" (09-22-2022, 874 pages), see
https://www.cisecurity.org/cis-benchmarks/

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 79

XIII. Memory Considerations

37. Avoiding OOM (out of Memory) Events by Careful
Selection of The Services to Be Run

This guide assumes we're using a very-small-memory VPS, with perhaps as little as 512MB of
RAM:

cat /proc/meminfo | egrep "(MemTo|MemFre|SwapTot|SwapFre)"
MemTotal: 484448 kB
MemFree: 92976 kB
SwapTotal: 2097148 kB
SwapFree: 2090688 kB

If you do experience an OOM condition due to the VPS being unable to allocate the amount of
memory that's been requested, the operating system will typically terminate that process,
logging an entry to /var/log/error. Note that the out-of-memory error is NOT going to
necessarily report the process that's the "memory hog," it's just going to kill and log the name of
the process that asked for memory it couldn't get. For example:

[…] kernel: Out of memory: Killed process 2158305 (clamd) […]

Having the OS terminate processes (more or less at random), is not a good thing when the
selection of packages has already been carefully limited to essential network services (sshd,
postfix, and nginx for static pages) and supporting security tools (such as ufw, unbound, NTP,
etc.). For that reason, we're NOT going to use some often-terrific (but less-essential) security
tools and services.

● Amavis (see https://www.amavis.org/)
● AppArmor* (see https://gitlab.com/apparmor/)
● auditd (see https://packages.debian.org/bullseye/auditd)
● ClamAV (see https://www.clamav.net/)
● DANE (see https://en.wikipedia.org/wiki/DNS-based_Authentication_of_Named_Entities)
● Fail2Ban (see https://www.fail2ban.org/wiki/index.php/Main_Page)
● Process Accounting (see https://packages.debian.org/bullseye/acct)
● SNMP (see https://en.wikipedia.org/wiki/Simple_Network_Management_Protocol)
● SpamAssassin (see https://spamassassin.apache.org/)
● syslog-ng (Community Edition) (see https://www.syslog-ng.com/community/)
● sysstat/sar (see https://packages.debian.org/bullseye/sysstat)
● Tripwire (Open Source) (see https://github.com/Tripwire/tripwire-open-source)
● Web Application Firewalls (such as https://github.com/nbs-system/naxsi)

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 80

* AppArmor runs by default on Debian for a limited set of preconfigured services. We're
going to leave those on/as-is.

38. Managing Swapping

MemFreewill often look "low" on Linux systems because Linux will aggressively use most
available memory for buffers/cache when it isn't needed for other purposes. Swap is normally
reserved for the (hopefully rare) moments when you need more memory than you've got, but
since it involves reading and writing to disk, swapping tends to be slow. You can influence the
way the operating system uses memory with the "swappiness" value (see the discussion at
"What does swappiness do and how does it affect swap_tendency?" at
https://access.redhat.com/solutions/103833). Let's check our sample system to
see what its "swapiness" is set to:

cat /proc/sys/vm/swappiness
60

For a server, some suggest we might see better performance by setting the swappiness to 10
(or some other value of your choice):

sysctl vm.swappiness=10
vm.swappiness = 10

If we wanted to make that setting persistent, we'd add

sysctl vm.swappiness=10

to the bottom of /etc/sysctl.conf

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 81

XIV. Conclusion

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 82

While you can get a Un*x virtual private server cheaply and easily today, there are still many
details associated with bringing up a functional and secure system.

This document assumes technical users are working from a Mac laptop, and are spending
$10-$20/month for a remote Virtual Private System (VPS) running Debian 11 ("Bullseye"). At
that price point, the VPS may have quite modest resources, including perhaps as little as
512MB of RAM.

Despite those constraints, we've demonstrated:

● The basic authoritative DNS records that should be created in one's DNS provider's
control panel

● Bringing up sshd for encrypted remote access with public key authentication and
Yubikey MFA support

● Getting automatic patching set up
● Setting up ufw (with ipsets) for firewall service
● Using NTP for time synchronization
● Configuring and running a DNSSEC-enabled recursive resolver service
● Installing Postfix for email, complete with SPF/DKIM/DMARC and opportunistic TLS
● Setting up an NGINX web server to deliver static web pages with Let's Encrypt free TLS

certificates
● While malware's not the problem for Un*x systems that it is for Windows, we did also

install two anti-rootkit products and a system auditing tool as part of the build
● Finally, we addressed the reality that having only 512MB forces us to forgoe many

classic security tools and sevices we really wish we could have shoe-horned in, including
staples such as ClamAV and SpamAssassin.

No security document can guarantee a "bulletproof" system, but we hope this document has
provided a solid and usable foundation for those setting up a basic VPS like the one described
above.

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 83

XV. Acknowledgements

We'd like to thank all those who reviewed and commented on earlier draft versions of this
document, whether explicitly listed here or not, including:

● Mr Todd Herr, Technical Director, Standards and Ecosystem, Valimail
● Mr Marc Evans, retired, ex-Farsight Security/DomainTools

Any remaining issues are solely the responsibility of the author.

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 84

© COPYRIGHT DOMAINTOOLS 2023 | WWW.DOMAINTOOLS.COM | 85

