
Effective security strategies are based on assessing and

addressing the current trends in attack vectors. Some

of the most common attacks with JavaScript are XSS

(Cross-Site Scripting), but since JavaScript is utilized

almost everywhere in an operating system there are file-

based attacks that security practitioners should be aware

of. These attacks can include malware delivered by email

in the form of attachments, such as PDFs or document

files. This flexible, powerful, and ubiquitous programming

language has become a common tactic for threat actors.

According to Verizon’s 2018 Data Breach Investigation Report, data breaches

involving malware typically use JavaScript because of its programmatic

flexibility to achieve whatever tasks the attacker deems necessary. And as

stated in the McAfee Labs Threats Report, in 2018 cryptojacking attacks

increased by more than 1100%, with Coinhive—a JavaScript-based tool for

mining Monero cryptocurrency—taking the lead.

With such dramatic increases, JavaScript is one of a number of growing threats

to your organization. As you work to update your security strategy, it’s best to

understand how attacks are being carried out so that you have proper context

on how to address them.

To get a better understanding of how JavaScript is leveraged in cyberattacks,

we will take a deeper look into the scripting language to show specifically how

it is used maliciously.

The data points available to monitor, detect, respond to, and identify attacks are overwhelming. What security

analysts and incident response teams require is threat intelligence that makes sense of all the available data and

integrates into their security configurations, solutions, and processes.

Solutions from DomainTools help unearth connected attack infrastructure, assess the risk of a potential attack and

to enhance incident response efforts. Look for insights from DomainTools’ Senior Security Engineer, Tarik Saleh

throughout this paper.

Let’s begin by starting with a foundational understanding of what JavaScript is and what it’s used for.

TURNING THREAT DATA INTO THREAT INTELLIGENCE: DOMAINTOOLS

DEFENDING AGAINST MALICIOUS
JAVASCRIPT ATTACKS

According to Verizon’s

2018 Data Breach

Investigation Report,

data breaches involving

malware typically use

JavaScript because

of its programmatic

flexibility to achieve

whatever tasks the

attacker deems

necessary.

© Copyright DomainTools, 2019. All Rights Reserved. 1

https://enterprise.verizon.com/resources/reports/DBIR_2018_Report.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-quarterly-threats-jun-2018.pdf
https://enterprise.verizon.com/resources/reports/DBIR_2018_Report.pdf
https://enterprise.verizon.com/resources/reports/DBIR_2018_Report.pdf
https://enterprise.verizon.com/resources/reports/DBIR_2018_Report.pdf
https://www.domaintools.com

JAVASCRIPT 101: THE BASICS

JavaScript is an object-oriented programming (OOP) scripting language primarily run on a web browser to enhance

the client-side browsing experience. Many people confuse JavaScript with Java, a syntactically similar but otherwise

unrelated scripting language used to create applications that run on a virtual machine. Java and JavaScript do not

share a common codebase.

JavaScript is one of the three core pillars—the others being HTML and CSS—that have made the web what it is

today. JavaScript began as a way to make web pages more dynamic and interactive for the client; for example,

to indicate password strength when you enter a password. JavaScript updates the indicator with each keystroke,

without needing to send the password to the server for an updated strength rating. With JavaScript, the assessment

and update of the indicator happen on the client. Today, massive amounts of JavaScript can be found on the web,

improving the web client experience.

One challenge that JavaScript presents is the opportunity for misuse by attackers. Each venue where JavaScript

can run thus has its own security concerns, risks, and attack surface.

SANDBOXING
JavaScript execution can be limited to a logical sandbox, where no access to the file system is available,

the code can access only the current web page and related web pages, and input and output

are restricted.

SAME ORIGIN POLICY
A given snippet of JavaScript can interact only with the place it came from, keeping a malicious web

page from accessing other web pages on the user’s behalf.

But even with these controls, using JavaScript still has inherent risks.

JavaScript was originally designed with functionality in mind. But over the years,
integrated security controls have become part of the language. Several controls in
place today provide some degree of security around the use of JavaScript:

DomainTools Insight: JavaScript Is Supposed to Be Secure

© Copyright DomainTools, 2019. All Rights Reserved. 2

https://www.domaintools.com

JAVASCRIPT: A KEY TOOL IN THE ATTACKER’S ARSENAL

Attackers need only two things to succeed: access to and some level of control over an endpoint. JavaScript

provides an opportunity to gain both, which might be one reason the amount of JavaScript-based malware has

risen by 204% in 2018 . A new rise in the frequency of cryptojacking (which uses JavaScript and has been seen in

the wild as both traditional executables and as browser tabs) might also be a factor. Despite the trends, attackers

continue to use JavaScript in new ways, year after year.

JavaScript has been around since 1995 (when it was first introduced as part of the now-defunct Netscape Navigator

web browser) and has grown in functionality over the years. Now consistently supported and enabled on almost

every web browser, JavaScript is used in some capacity by most websites with any kind of advanced functionality.

Attackers make the reasonably safe assumption that JavaScript is going to be present on a given endpoint.

Attackers love this situation. The presence of JavaScript provides attackers with a built-in means by which to launch

malicious actions. Every time you browse a modern website, you give that website (and anyone who controls that

site) the ability to run arbitrary code on your endpoints. That puts attackers in the driver’s seat.

Now, security has always been a consideration of JavaScript, but the use of the language starts from a very unsafe

premise: the running of unknown, unreviewed, and unapproved code from untrusted sources (that is, external

websites), without knowing whether those sources haven’t been compromised. In practical application and

because JavaScript is so widely used, all IT organizations can do is keep browsers and plugins up to date as well as

incorporate a client-side antivirus solution.

Even with the policies and sandboxing in place to minimize the attack surface, attackers are constantly looking for

ways to make their malicious code bypass these controls and safeguards. In a recent Ultimate Windows Security
Webcast, Randy Franklin-Smith and Tarik Saleh highlighted an example where an attacker used a JavaScript

Embedded into the PDF file that was performing heap spraying with exploit code against a vulnerability in

Adobe Reader.

So, why is JavaScript so useful to attackers?

The simple answer is:

It’s everywhere.

© Copyright DomainTools, 2019. All Rights Reserved. 3

https://www.mcafee.com/enterprise/en-us/assets/reports/rp-quarterly-threats-jun-2018.pdf
https://www.domaintools.com/resources/videos/webinar-how-to-analyze-and-investigate-malicious-javascript-attacks/?utm_source=uws&utm_medium=white-paper&utm_campaign=defending-against-javascript
https://www.domaintools.com/resources/videos/webinar-how-to-analyze-and-investigate-malicious-javascript-attacks/?utm_source=uws&utm_medium=white-paper&utm_campaign=defending-against-javascript
https://www.domaintools.com

JAVASCRIPT: A KEY TOOL IN THE
ATTACKER’S ARSENAL (CONT.)

Back in 2010, a popular social media platform did not validate the text placed into the bio field of

a user’s profile. So, attackers placed JavaScript code there. Anytime someone loaded that profile

page, the user’s browser recognized the JavaScript code and executed it client-side in the browser—

unbeknownst to the user—using the context and credentials of the social media user. This method

allowed attackers to spread the code to additional profiles, repeating the process.

Another example takes a different approach. In the previous example, the JavaScript was stored

on the server and rendered to the user. In this case, there is no JavaScript on the server. Instead, a

malicious link containing JavaScript is sent to a user (presumably as part of a phishing scam). The

link leads to a banking website. When the website cannot find the URL that is specified in the link,

it presents the JavaScript back to the client browser in such a way that the code is processed. And

because the user has logged in to the banking website, the JavaScript code can now perform actions

in the context of the user’s account.

One attack method that attackers use with JavaScript is to take provided user credentials
from one site and use them on another. This is accomplished via XSS, which has been around
for more than 10 years and shows no signs of going away. The following examples can give
you an idea of how attackers leverage XSS.

DomainTools Insight: Cross-Site Scripting (XSS)

It isn’t just web browsers that leverage JavaScript; attackers use it in many other instances as well, including Adobe

files (including PDFs), .js and .jse files executed by Windows Script Host (WSH), server-side node.js, databases, and

MacOS’s JavaScript for Automation.

Let’s recap: You have a powerful, flexible scripting language that runs just about everywhere and that allows

untrusted code to be run within your organization. Sounds like a recipe for disaster.

To provide additional context on how JavaScript is specifically used as part of an attack, let’s look at a few examples

from the wild.

© Copyright DomainTools, 2019. All Rights Reserved. 4

https://www.domaintools.com

MALICIOUS JAVASCRIPT IN ACTION

Any application that supports embedded JavaScript is a potential risk. As previously mentioned, this includes nearly

every web browser and a host of other client- and server-side applications. JavaScript can be used maliciously in an

immeasurable number of ways; we’ll focus on two common ways it’s been seen in actual use as part of an attack.

Adobe does have some degree of security controls in place. An ability to disable JavaScript entirely, an API blacklist

to limit functionality, and an ability to configure specific privileges and safe locations can be used to define under

which circumstances JavaScript code within PDFs can be executed.

PDFs
Adobe provides an API specifically for JavaScript, with many other PDF alternative applications offering similar

support. The JavaScript in PDFs uses a different interpreter than that of a web browser, with the language itself

being essentially the same. Malicious actions can include locally saving or opening embedded executables,

downloading files from the Internet, or even making a UNC call to the Internet with the user’s current username and

password hash. In the end, attackers have an attack strategy, so every action that uses JavaScript is by design and

serves a purpose in the attack.

PDFs can utilize the OpenAction function, similarly to how Microsoft Word uses macros to execute

commands upon opening a document. When paired with the use of JavaScript, the PDF becomes a

potentially malicious file. Without further inspection of the specific JavaScript in use, it should definitely

be considered suspicious, although not suspicious. It’s possible that the file could be a PDF being used

as a web form, with the form data submitted to a website upon completion. But without knowing, the

code should be cause for concern.

Example of Adobe Acrobat’s
OpenAction funtion when paired
with the use of JavaScript.

Identifying PDFs as malicious is much like working TSA at the airport: Everyone generally
looks and behaves the same, but leading indicators can warrant suspicion. Take the following
example, which shows the output from the analysis tool PDFcop.

DomainTools Insight: Spotting Malicious PDFs

© Copyright DomainTools, 2019. All Rights Reserved. 5

https://www.domaintools.com

MALICIOUS JAVASCRIPT
IN ACTION (CONT.)

Windows Script Host
This automation technology has been out since Windows 95 and is usually associated with Visual Basic scripting.

But WSH can also be used to process JavaScript files. WSH can be used to simulate keyboard strokes, modify the

Windows Registry, and execute programs on both local and remote machines. In addition, using the Component

Object Model (COM), WSH can be used to download files from the web, modify system configurations, and provide

access to databases, Active Directory, applications, and even hardware.

One method attackers use to remain in stealth is to “live off the land” (i.e., use native tools).
WSH is a powerful tool, supporting a number of scripting languages: natively, JavaScript and
Visual Basic for Applications (VBA), and optionally, other scripting languages, if installed. With
WSH and the proper credentials, the possibilities are endless when it comes to which actions
can be taken and which parts of the endpoint’s operating system and beyond can be accessed,
configured, and manipulated. Take these examples of the output tool Frida-WSHook, showing
how JavaScript can be used to do the following:

DomainTools Insight: Living off the Land with WSH

Make HTTP requests

Perform DNS lookups and start
downloads of malicious files

Run malicious applications

Microsoft does not provide any granular security controls around WSH, other than to disable WSH within

the Windows Registry, making the unchecked use of this native automation technology very concerning.

© Copyright DomainTools, 2019. All Rights Reserved. 6

https://www.domaintools.com

MALICIOUS JAVASCRIPT
IN ACTION (CONT.)

Windows Script Host (cont.)

Each attack contains specific relevant indicators of compromise (IoC), such as the domain
fastcommunications[.]net, as well as the directory path and filename of the executable found
in the previous example. It’s critical to investigate each of these, leveraging industry intel to
quickly identify any associated domains, file names, etc. that can be added to block lists to
thwart off future attacks.

DomainTools Insight: Making Sense of IoCs

DomainTools Iris can provide needed detail, such as the DNS and hosting history, as well as the domain

registrant. In the case below, Iris shows the registrant of fastcommunications.net also owns 15 other

domains. So, it makes sense to expand the investigation to include those domains, as they may also be

malicious as well, allowing organizations to get ahead of attackers.

Iris provides risk details on the associated domains,
providing organizations complete visibility into the scope
of the attack and the attacker.

© Copyright DomainTools, 2019. All Rights Reserved. 7

https://www.domaintools.com

MALICIOUS JAVASCRIPT
IN ACTION (CONT.)

Obfuscation
By now you might be wondering how to stop malicious JavaScript. There are two basic ways: You need to either

block JavaScript entirely or detect JavaScript, parse its contents, and determine whether a given script should be

blocked. Blocking JavaScript will likely break functionality. Remember, just about every website on the planet with

any kind of advanced functionality uses JavaScript to some degree. So evaluating JavaScript code for malicious

intent is likely the better option.

The challenge is that attackers are keenly aware of this possibility and work to obfuscate both their specific code

and the detection of any such malicious actions taken because of that code.

SIMPLE JAVASCRIPT OBFUSCATION
Take the following example, in which variables x and y are processed using the eval function to create new values.

When Javascript code calls the ‘eval’ function, it is used to execute the Javascript code whether it is malicious or

benign.

ADVANCED JAVASCRIPT OBFUSCATION
The following obfuscation example takes the relatively easy-to-read scripting code on the left and creates the

embedded function on the right. This example has legitimate purpose, as many developers want to protect their

intellectual property. But it also demonstrates how attackers can use obfuscation to hide the intent and function of

their malicious code.

© Copyright DomainTools, 2019. All Rights Reserved. 8

https://www.domaintools.com

MALICIOUS JAVASCRIPT
IN ACTION (CONT.)

The simple examples in this section do not do justice to the amount of effort that attackers
put into obfuscating their attacks. An attack that uses a simple insertion of JavaScript code
would likely be found and defeated before it could ever get close to a user. So attackers want to
obfuscate more than just the purpose and actions of JavaScript; they incorporate obfuscation
as a standard throughout the entire attack. They look to leverage attack methods that involve
multiple layers. Take the following example:

DomainTools Insight: Attackers Take Obfuscation to Great Lengths

A PDF-initiated attack oftentimes includes an

embedded Microsoft Office file (MS Publisher in the

example above) to be extracted, saved locally, and

run. In that file is scripting that uses a completely

difference tool set: VBA, which, upon opening, points

the endpoint to a compromised website where

malware is automatically downloaded.

The challenge for organizations is that it’s necessary to

see the attack nearly all the way through to finally be

presented with the malicious download or action.

DomainTools Iris investigation platform provides

domain and DNS-based threat intelligence and risk

scoring. So, in cases where domains are identified (as

part of a deobfuscation exercise or found directly in

JavaScript code), Iris provides insightful details around

whether the domain in question has the propensity to

be leveraged in phishing attacks, malware attacks, or

spam. Domain Risk Score predicts how likely a domain

is to be malicious, often before it is weaponized. This

can close the window of vulnerability between the

time a malicious domain is registered, and when it is

observed and reported causing harm. The Domain

Risk Score algorithms analyze a domain’s association

to known-bad infrastructure, as well as intrinsic

properties of the domain that closely resemble those

of known phishing, malware, and spam domains.

PDF
with

JavaScript

Website
downloads

malware

JS extracts
and runs
PUB file

PUB file
runs VBA

macro
VBA points
to spoofed
MS website

Based on your investigation goals, the details provided
by Iris and Domain Risk Score can help determine how
to best proceed with your investigation.

© Copyright DomainTools, 2019. All Rights Reserved. 9

https://www.domaintools.com

STOPPING JAVASCRIPT ATTACKS: LOOKING AT THE CODE AND BEYOND

ABOUT THE AUTHORS

The attack examples in this white paper shed light on the methods that attackers leverage while taking advantage

of JavaScript. And the examples should make the case that trying to stop an attacker at the JavaScript level

probably isn’t the right tactic. There are too many ways to leverage JavaScript, and in most cases, you won’t be able

to tell what the code is doing.

What’s necessary to thwart JavaScript-based attacks is to first understand that the scope of where JavaScript is

executed – beyond just the browser. This will serve as the basis for security practitioners to understand where to

build up defenses and how to best respond to security incidents.

The next step is to proactively mitigate attacks by intelligently looking at network traffic, email content, domains,

and more – all of the elements used by JavaScript. These details can be used to provide insight into whether the

threat potential exists and where it’s coming from. Doing so enables organizations to better respond before a

successful attack occurs.

Should a JavaScript-based attack occur, security practitioners leveraging threat intelligence tools like DomainTools

Iris platform can gather more data behind the attack and the attacker. Identifying additional attacker infrastructure

will help your blue team implement security mitigations to protect against further damage from the attacker.

JavaScript is a powerful means by which attackers attempt to gain access to your endpoints and, ultimately, your

data. By focusing on collecting and leveraging threat intelligence, your organization will be better prepared to spot,

stop, and respond to JavaScript-based attacks.

Randy Franklin Smith is an internationally recognized expert on the security and control of Windows and AD security.

Randy publishes www.UltimateWindowsSecurity.com and wrote The Windows Server 2008 Security Log Revealed—

the only book devoted to the Windows security log. Randy is the creator of LOGbinder software, which makes cryptic

application logs understandable and available to log-management and SIEM solutions. As a Certified Information

Systems Auditor, Randy performs security reviews for clients ranging from small, privately held firms to Fortune 500

companies, national, and international organizations. Randy is also a Microsoft Security Most Valuable Professional.

Tarik Saleh is the Senior Security Engineer at DomainTools. He has been a technology hobbyist since he got his

first computer at age 10 and has over 7 years experience in Information Security in various blue-team roles such as

leading a Threat Hunting team, Incident Response and Security Operations. Tarik has worked in the Security space for

enterprise companies such as Amazon and Expedia. Security is more of a passion than a ‘9-5’ job for Tarik. Outside of

work, you’ll see Tarik and his dog Roland out enjoying the beautiful Pacific Northwest.

ABOUT DOMAINTOOLS
DomainTools helps security analysts turn threat data into threat intelligence. We take indicators from your

network, including domains and IPs, and connect them with nearly every active domain on the Internet.

Those connections inform risk assessments, help profile attackers, guide online fraud investigations, and

map cyber activity to attacker infrastructure. Fortune 1000 companies, global government agencies, and

leading security solution vendors use the DomainTools platform as a critical ingredient in their threat

investigation and mitigation work. Learn more about how to connect the dots on malicious activity at

http://www.domaintools.com or follow us on Twitter: @domaintools.

© Copyright DomainTools, 2019. All Rights Reserved. 10

http://www.domaintools.com
Twitter: @domaintools
https://www.domaintools.com

