F<RSIGHT

SECURITY

Working With The SIE Batch API:
A Command Line Client In Ruby, Perl,
Python and C

Version 1.0.1
March 26, 2020

Remember how it was with you?
Remember how you pulled me through?
| remember

| remember

"I Remember", deadmau5 and Kaskade
https://www.youtube.com/watch?v=vUzVCw8BEXA
[10,108,796 views as of 2020-02-23]

Overview/FAQ

"What's SIE?" The Farsight Security Information Exchange ("SIE") is a way to see live passive DNS data feeds and other
cybersecurity data feeds "as they happen." Think of SIE as being like having your own network collecting cyber security
data all over the Internet -- but with none of the hassles of running that infrastructure yourself.

"What Data Is Available Via SIE?" SIE data is organized into "channels" (similar to cable TV channels). A guide to
available channels is at https://www.farsightsecurity.com/assets/media/download/fsi-sie-channel-guide.pdf

"How Do | Get Access To Data on a Particular SIE Channel?" Until recently, subscribers needed to monitor channels of
interest in real time, either from a server colocated at SIE or through use of an encrypted network tunnel. This worked,
but was like collecting data from a flowing river -- if you didn't grab something as it went by, it was likely gone forever.

The New Alternative -- SIE-Batch: SIE-Batch offers a new alternative to watching SIE channels continuously. SIE Batch
buffers and remembers SIE data for you and other subscribers. This means that subscribers can use SIE-Batch to pull
data for select SIE channels from a buffer of data going back at least half a day. This means that if you just want to grab
some SIE data, you can do so now with no waiting, and no fretting over recent data you might otherwise have missed!

"How Do I Mechanically Retrieve SIE-Batch Data?" The easiest way for subscribers to download SIE data via SIE-Batch is
via an easy-to-use point-and-click web page offered by Farsight. Contact Farsight Security Sales for more information or
to arrange access at sales@farsightsecurity.com or 1-650-489-7919.

"Is SIE-Batch Free?" No. SIE and SIE-Batch are commercial product offerings. For information about purchasing access
or arranging for a trial, contact our sales team at sales@farsightsecurity.com or call 1-650-489-7919. (Farsight also
supports the academic research community and individual sworn law enforcement officers via a program of grants and
discounts, see https://www.farsightsecurity.com/grant-access/ for more on that option.)

"What If | Want To Integrate SIE-Batch Into My Own Custom Security Framework?" You can! Developers can directly
access the SIE-Batch API from their own custom applications. You'll receive a pointer to the APl documentation with
your trial or subscription.

"So What's THIS Document About Then?" This document provides a brief intro to SIE and answers some of the more
common questions users have. This document is meant to help bootstrap developers by showing examples of how to
use SIE-Batch in Ruby, Python, Perl and C. For each language, we build a simple command line client that let's you:

e Verify that your SIE-Batch API key is OK

e List the channels you've got available

* Find the range of dates available for a specific channel (and how many bytes that data represents)

e Request data for a specific channel for a user-specified number of minutes (going back from now)

e Request data for a specific channel from a user-specified starting datetime to a user-specified ending datetime

These examples should give you a "quick start" when it comes to using SIE-Batch and building your own custom apps.

What Else Can | Do With These "Proof of Concept" Applications? If you like to work at the command line/from the
Un*x shell prompt, you may find these proof of concept applications are just what you need for:

e Quickly verifying that your SIE-Batch API key is okay and that the channels you expect have been provisioned
® Routinely downloading SIE data (perhaps from a cron job)
* Making ad hoc SIE data requests to support one-off data requests for investigations

"I Have Other Questions!" Feel fee to drop us a note at support@farsightsecurity.com -- we'd be glad to help.

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

Contents
OVEIVIEW/FAQL ..eeeiieeeeeee ettt e et e ettt eeeeesesesaa e a—eeeeeeesssaesassaaeaeeesssaeaesassasas s seateeseeesesaaaasseaeaeeesessssananssaasssesaeeseessesansannes 2
(610] 01 (] o 1 £ OO TSP PP PPPPPTTOPPTPI 3
Y= 4T o T TR T3 e Yo 11 o 4T 4
[=0. OVEIVIEW ittt ettt ettt ettt e e e e e e e ettt e e e e e e e e aae b et eeeeeeaaaseeee s a nn b et e aeeeeeeeeaanass s b et e e eeaeesaa ansseassnbeetaeeeeeeanannreneees 5
[-2. Context: Why This Whitepaper? Why Build An Actual Sample ClIent? ... 5
[-3. Client Design and Desired Features: CHENT USE CASESccccuuriiiiieeieiiecciiiiieeeeeee e e e e e e eseesiiestes e e e s e e s eseesnsraseseeeseessenssnsnnnns 5
USE CaSE HL: TESTING weviiiiiiiiiiiiiiiiiiiiiitiiiiisssssse e e e e se s e e e e e e eeeaeaeeeeeeeeeeeetetesess saas s asaaassasssssesesasesaseeeeseeeeeeeeeesenesenssssnnsnsnnns 5
Use Case #2: Ad HOC/ONE-OFf ANGIYSESeoovieiiiireecieiete ettt ettt ettt ete e teesteeetveesteeeaeeabeseteesareebeestneenrens 6
Use Case #3: Routinely Scheduled DOWNIOAAScccuiiiiiiiiiieccciiiee ettt esite e e ree e e e tvae e e e e stae e e e srteeeeesassaeeesnnnes 6
R 1 1o o ' =1 £ O PP PSPPI 7
Q) JSON LINES FOIMAT FIlES .niiiiiiiiiieiiiee ettt ettt e e e e et e e abe bbb aeeeeeeeeeseeesssbsasaeeeeseeeesasnsssrasseeeesereeeenens 7
D) NIMISG FOIMAT FIlES wvveeviiiiiiiiiiiiiiiie ettt et e ettt e e e e e e eee bt bbb baeeeeeeeeeeeesssbaesaeeseeeesesssssssreeeeeeeseereeeanens 8
I-5. Understanding SIE-Batch API Data Availability and Channel VOIUMEScoooiiiiiiiiiiee e e 9
Section Il. Our Approach To The SAMPIe ClENtSeececiiiiiiiierceceirrrereeeseeesrereennssssssesreessnnsssssssssssessennsssssssssseneens 10
[1-1. THE OVEIAIl PrOCESS ..eeuviiiiieeeiiieitie e eiee ettt e sttt e sttt e s te e st be e sbe e e sabee e sabbeeesabaeesabeeesabaesabeeeenstessabeeennbaeenbbaesesabaeensbeeenaseennses 11
[1-2. Input Validation and Error HANAIINGeeviiiiiiiieee ettt e et e e e e et e e e e e e e e e e e e abaa e e seeaaeeseeen eeennreaeanes 12
[I-3. Leveraging 3rd Party Libraries For Specialized Capabilitiescccuviiiieri it 13
[1-4. Miscellaneous Program Design CONSIAEIAtIONSceieiiiiiiiiiiiiieieie e e e e e cccree e e e e s ee e e e e e e nare e e e e e e e e s e e s aasanreeeseesessesannsnns 14
Section 1. INStalling The CHENtScccuuiiiiiiiiiiiiiiiieiiiieeaieriirneessseiissetiesssssssssssssstessssssssssssssssssssssssssssssssssssasses 15
[1I-1. Installing the Ruby (Sie_get _rb) CHENToei et e e ettt e e e et e e e e e e areeeaeeareee e e e nseeeeennres 16
[11-2. Installing the Python 3 (Sie_get_PY) CHENT ...ooooeeiiei e e et e e et ee e e e tbe e e e e ebe e e e e eeateeeeeesasaeeeeennees 17
[11-3. Installing the Perl (Sie_get PlI) CHENTooi ettt e ettt e e e ettt e e e eetbee e e eeataaeeeeesaseeeeeessasseeesansaeeeans 18
[1-4. InStalling the C (SI@_BET C) CHENT ..eei ettt e ettt e e e ettt e e e e ettt eeeaeetaeeeeesssabeeesassaeeseensassseeesansaseaann 19
SECHION IV, CONCIUSION ...uuuurreinennnennnsnnssnnssesssssssemssesssesssssssssnsssnns 20
Appendix |. Building nmsgtool from Source For Mac OS Catalinaccceiiiireeimeeiiiiiiiiieeeeeerseseserreenneesssssssssseeennanssnnes 22
Appendix Il. Getting Channel Volume Summaries With sie_get_* ..o e 27
Appendix lll. Miscellaneous Program Design NOTEScccoiiiiieeeeiieeiiiiieeeeensesseeserrereesnssssessseneenssnsssssssssssesnnnnsssssssenees 30
Appendix V. sie_get_rb client SOUIrCe COEuuuiiiiiiiiiiirrcecrriererenesesessereeeennsssseseseeennasssssssssssesnmnansssssssssnesnnnnnes 34
Appendix V. sie_get_py client SOUIrCE COAEcoiimmmmmmiiiiiiiiitiieeireererrereeeanssseesesreennsssssssessereennnnsssssssssssessnnnssssssssnnes 46
Appendix V1. sie_get_pl client SOUrCe COUEoummmiiiiiiiiiiiiccccerrrereeeesressesrereenessssssesseennanssssssssssesnnnansssssssssnesnnnnnnen 65
Appendix VII. sie_get_c client SOUIrCE COAEcriimmeeciciiiiiiriceerrce s rrrreereesesee s s e s eennsnsssseesesseennnnssssssssesseennnnsnssansennes 78

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

Section |. INTRODUCTION

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

I-1. Overview

The Farsight Security SIE Batch service allows Security Information Exchange (SIE) subscribers to conveniently download
recent SIE data for select subscribed SIE channels. This normally happens via an interactive web client, as described in:

"What's SIE Batch? Why Might | Be Interested In It?"
https://www.farsightsecurity.com/txt-record/2020/02/20/stsauver-siebatch/

However, the SIE Batch API that underlies the SIE Batch web client is also available for subscriber use. It is documented
on a customer-only web site:

https://batch.sie-remote.net/apidoc/

The purpose of this report is to help subscribers begin working with that API. We will be providing example
implementations of a simple command line client in four popular languages: Ruby, Perl, Python and C.

I-2. Context: Why This Whitepaper? Why Build An Actual Sample Client?

We know that it can sometimes be tricky to begin working with a new API, no matter how experienced you may be, and
no matter how clean the API itself may be. Having a working example can be a huge boon. Having an example in the
specific language you actually develop in can put your productivity into overdrive.

In the past, we'd published the blog article "Making Programmatic DNSDB Queries With libcurl"
(see https://www.farsightsecurity.com/txt-record/2016/11/04/stsauver-dnsdb-libcurl/).
That article was meant to help people begin to call DNSDB's API from C with libcurl. It has been quite popular.

Paralleling that earlier DNSDB-focused article, shortly after SIE-Batch was announced we published another blog article
showing how to make simple programmatic queries using SIE-Batch's AP| from C with libcurl:
https://www.farsightsecurity.com/txt-record/2020/03/23/stsauver-siebatchc/

The primary issue with that article is that we wanted to keep it short, so it really only barely scratched the surface of
what the SIE-Batch API can do, and it didn't deliver a true fully-featured SIE-Batch API client. It was also written around
libcurl and C. While C remains a popular choice among professional developers, Cis a language that's particularly
cumbersome to use for string-handling. We believe most users will prefer to use a string-manipulation-friendly scripting
language such as Ruby, Perl or Python. In this whitepaper we're providing full examples for all three of those scripting
languages, while also providing a full version implemented in C.

Finally, when it comes to the question of "Why actually build a full client?", there can be many subtle nuances to using
an API that you might not notice unless/until you're actually developing a complete application. Hence, we've gone
ahead and done so for this whitepaper, thereby effectively "eating our own dog food."

I-3. Client Design and Desired Features: Client Use Cases

Use cases tend to drive client features. We had three main use cases in mind for this set of programs.

Use Case #1: Testing One of the simplest use cases for a command line client is to confirm that we can reach the SIE-
Batch API server, or confirm that our SIE-Batch API key is valid, or check to see the range of dates for which data is

available (and how much data that represents). A command line client should make it easy to do those things, and for us
to get a list of the channels the client supports.

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

We envisioned something like:

$ sie_get_rb checkkey €< to check connectivity and verify key validity
$ sie_get_rb channels € to get a list of channels
$ sie_get_rb 212 € get available dates and volume for ch212

Use Case #2: Ad Hoc/One-Off Analyses Moving beyond simple testing, we believe SIE-Batch is perfect for an analyst who
wanted to get an ad hoc sample of data, perhaps covering a particular UTC datetime range for a particular SIE channel
(such as SIE Channel 212 from February 13", 2020 at 18:42 UTC to February 13%, 2020 at 18:47). We wanted the analyst
to be able to simply say:

$ sie_get_rb 212 "2020-02-13 18:42:00" "2020-02-13 18:47:00"
The output from that command would then go to an output file such as:
sie-ch212-{2020-02-13@18:42:00}-{2020-02-13@18:47:00}. jsonl

That file's name may initially seem "exotic" or "intimidating," but it actually is pretty straight forward when decoded:

Filename element: Connotes:

sie source of this data
ch212 specific channel
{2020-02-13@18:42:00} starting datetime
{2020-02-13@18:47:00} ending datetime
jsonl file format

Having this sort of systematic file naming structure is important if you end up with many files — you want the files to be
easily sortable and "self-documenting" if at all possible, so there's no need to produce and retain separate "metadata"
about the files.

Use Case #3: Routinely Scheduled Downloads As we worked on the client and talked with colleagues, we also came to
understand that another popular use case would consist of customers routinely pulling data for a channel from cron.
This might be done to:

e Collect data in support of an actual investigation
* Asaway to routinely download and save data, or
® As part of an ongoing quality control testing program.

This use case drive us to support a simplified query specification, namely:
$ sie_get_rb channelNumber now minutesBack

For example:
$ sie_get_rb 212 now 5

That is, "retrieve the last five minutes of ch212."

While this request format is simplified, the emitted output filenames are written in the same format as the explicitly-
specified datetime queries described previously in this section.

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

I-4. File Formats

The contents of the output file will be the native format for the channel (e.g., either JSON Lines or binary NMSG format).

Some channels mentioned in the Farsight Security Channel Guide® may not be available via SIE Batch API at this time.
Currently the channels NOT available via SIE Batch are Ch14 (Darknet), Ch220 (DNS Errors), and Ch255 (Heartbeat).

The channels that are currently delivered in binary NMSG format are Ch204, Ch206, Ch207, and Ch208.
The remaining channels (Ch25, Ch27, Ch42, Ch211, Ch212, Ch213, and Ch214) are all delivered in JSON Lines format.?
a) JSON Lines Format Files: Let's look at an example to make this "concrete." We'll start with JSON Lines format, as used

by Channel 212. We can "pretty print" JSON Lines output using the popular JSON formatting client "jq"
(see https://stedolan.github.io/jq/):

jg '.' < sie—-ch212-{2020-02-13Q@18:42:00}-{2020-02-13Q@18:47:00}.jsonl

"time": "2020-02-13 18:42:02.823029041",
"vname": "SIE",
"mname": "newdomain",
"source": "albalO2cft",
"message": {
"domain": "xmzpknm.cn.",
"time_seen": "2020-02-13 18:40:51",
"bailiwick": "cn.",
"rrname": "xmzpknm.cn.",
"rrclass": "IN",
"rrtype": "NS",
"rdata": [
"ns3.dnsdun.com.",
"ns3.dnsdun.net."
1,
"keysll: [] ,
"new_rr": []
}

}
[etc]

Some JSON Lines files, such as the output from Ch27, may include base64-encoded fields. For example:

{"time":"2020-02-13 20:37:14.523360013", "vname" :"base", "mname" : "encode",

"source":"albal02cf", "message": {"type":"JSON", "payload":" [encoded payload blob
here]"}}

[etc]
To decode those payloads, you can say:

$ Jjg -r '.message.payload' <
sie-ch27-{2020-02-13@20:36:00}-{2020-02-13@20:38:00}.jsonl | base6d -d | jg '.'
{

"reported_url": "[URL elided here]",

"domain_malicious": "O0O",

"falsepositive": "0O",

"url_type": "Phishing redirect",

1See the SIE Channel Guide that's available at https://www.farsightsecurity.com/assets/media/download/fsi-sie-channel-guide.pdf
2 http://jsonlines.org/

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

"shutdown_time": "[datetime elided here]l",

"ip_addresses": "[IP elided here]",
"normalized_url": "[URL elided here]",
"domain": "[domain elided here]",
"detected_time": "[datetime elided here]",
"target_brand": "[brand elided here]"
}
[etc]

b) NMSG Format Files: If you have an NMSG binary format file (rather than a JSON Lines file), use nmsgtool to process it.
If you're using Debian Linux, you can install nmsgtool as a package, see
https://www.farsightsecurity.com/technical/SIE-user-guide/sie-debian/

Source code is also available for those who prefer to build from source, or for use on systems other than Debian Linux.
See https://github.com/farsightsec/nmsg and Appendix | for information on building nmsgtool for Mac OS Catalina.

Once we have the software we need installed, we can retrieve some data. Let's retrieve a minute's worth of ch204 with:

$ sie_get_rb 204 now 1
That yielded the binary format NMSG output file:
sie-ch204-{2020-02-13Q20:54:00}-{2020-02-13@20:55:00} .nmsg
To see data decoded from NMSG format into normal SIE presentation format:

$ nmsgtool -r sie—-ch204-{2020-02-13@20:54:00}-{2020-02-13@20:55:00} .nmsg
[113] [2020-02-13 20:53:59.849148756] [2:1 SIE dnsdedupe] [00000000] [1 T[]
type: EXPIRATION

count: 2

time_first: 2020-02-13 14:51:17

time_last: 2020-02-13 17:21:18

bailiwick: straubing.de.

rrname: bnschkennzeichen-9.straubing.de.

rrclass: IN (1)

rrtype: TXT (16)

rrttl: 3600

rdata: "v=spfl a:mxout58.expurgate.net ~all"

[etc]

OR if you want to decode the file from binary NMSG format into JSON Lines format:

$ nmsgtool -r sie-ch204-{2020-02-13Q20:54:00}-{2020-02-13Q20:55:00} .nmsg -J -
{"time":"2020-02-13 20:53:59.849148756", "vname":"SIE", "mname" : "dnsdedupe",
"message": {"type" :"EXPIRATION", "count":2, "time_first":"2020-02-13
14:51:17","time_last":"2020-02-13 17:21:18","bailiwick":"straubing.de.", "rrname":
"bnschkennzeichen-9.straubing.de.”", "rrclass":"IN", "rrtype" :"TXT", "rrttl1":3600,
"rdata": ["\"v=spfl a:mxout58.expurgate.net ~all\""]}}

[etc]

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

I-5. Understanding SIE-Batch API Data Availability and Channel Volumes

SIE-Batch is NOT meant to provide all-encompassing historical archives of SIE data. It just provides a temporary buffer.
Typically it will have data going back for perhaps half a day, and then only for channels of manageable size. (The volume
of data Farsight offers via SIE-Batch may also change over time.) At the time this was written, the length of time the data
for each channel was retained, and the volume thereof, looked like the following (the scripts used to produce this little
summary are included in Appendix Il):

$ bash check-volumes.py | ruby read-time-2.rb | sort -k3n

Chan Minutes Octets
27 1165 1768388 €E.g., ~1.7meg
25 1166 18092719
212 1166 68410653
211 1166 526179776 € Over half a gig
213 1166 15039295360 € 15gig
42 1165 61425710804
206 735 120317004442
204 735 143056192588
207 735 153865819896
208 735 191942653519 € Nearly 200 gig

1165 minutes equals a buffer or more than 19 hours of data. 735 minutes equals a buffer of more than 12 hours worth
of data. As time passes, new data will replace the old data in the buffer, FIFO (first in, first out) style.

While there's currently 12-19 hours of data there, most users won't be downloading anywhere near that much in a
single request. SIE-Batch is really meant to handle much smaller requests. For example, maybe you want to download an
hour's worth of Ch212 data. That quickly completes over a shared 100Mbps cable modem connection:

$ time ./sie_get_rb 212 now 60
real O0m5.044s

user 0m0.212s
sSys Om0.113s

Even downloading five minutes worth of Ch208, the busiest channel of those listed above, doesn't take long:

$ time ./sie_get_rb 208 now 5
real 3ml3.779s

user Omll.211s
sSys Oml2.415s

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

Section Il. Our Approach To The Sample Clients

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

10

11
11-1. The Overall Process

We can describe our overall process flow as a five-step process:

Get The Query Arguments
Supplied By The User

Y
Get The User's SIE-Batch
API Key From lts File

Compose the
SIE-Batch APl Query

v

Make RESTful
SIE-Batch API Query

Y
(F’mcess Returned F{esultsj

We'll now explain what we mean by each of those "blocks:"

i) Query arguments will typically be picked up via an "argc/argv[] "-like mechanism, to use the "C nomenclature" for
accessing command line arguments.?

ii) Retrieving the SIE-Batch API key from its file is normally a matter of getting the user's home directory location,
opening that file, reading in the SIE-Batch API key, and closing the file.

iii) Before we can send a query to the SIE-Batch API, we need to construct the required query. Those queries will be in
JSON format. We can either assemble those queries "manually,” or we can use a JSON library to serialize inputs into
the required format.

iv) We're then ready to submit our RESTful SIE-Batch API query using an SSL/TLS library (such as libcurl).

v) Finally, we'll take the results and either just save them ("as-is") to a file or process the returned results to extract
specific bits of information that are of interest.

(Possible Utility Function

N

(Validate AP| Key Status

—

argi="checkkey” Display Error Message)

[List Defined Channels) arg1="channels"

| Correct Error or
? -ﬁ
Fane Flaguest: I[Display Error Message J

arg1=valid
channel #

Get Dates and Violume For
The Specified Channel #

R U —— PR P —

(Compose Output Name J

(Display Error Message)

A
(Retrieve And Save Data]

3 https://www.gnu.org/software/libc/manual/html_node/Program-Arguments.html
Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

12
11-2. Input Validation and Error Handling

When using the sample application, there are a few common potential errors:

(1) The user may attempt to execute a non-existent command: Currently the sample client knows about two named
commands: checkkey and channels. Users can also mention a specific channel number to get summary info
about that channel (e.g., the earliest-available data, latest-available data, associated volume). However, a user might
make a mistake, perhaps asking for checkkeys (plural), or listchannels (instead of just channels). If/when that
happens, the user will be shown an error message (and typically a command synopsis to help them out).

(2) When the user actually wants to pull data from one of their channels (rather than just execute a utility command)
opportunities for errors increase due to the presence of datetimes and other factors:

® The user might ask for data that's older than what's available in SIE Batch's buffer, or for data that's yet to be
collected (e.g., they might try to ask for data "from the future").

e |f specifying arbitrary datetimes, we expect the user will supply a quoted and zero-padded YYYY-MM-DD
HH:MM:SS datetime such as "2020-02-24 14:22:35" The user may fail to do so. Instead...

o They may enter only a date or only a time (or they may enter both but fail to put quotes around the two
values, causing them to be read separately rather than as a single datetime value).

o They may omit leading zeros on various values. (perhaps entering "2020-2-5 8:20:00" instead of "2020-
02-05 08:20:00")

o The user may write the date in the wrong order or wrong format (we want YYYY-MM-DD but they may
try something else, such as MM/DD/YY)

o When specifying arbitrary starting and ending datetimes, the SIE-Batch API requires seconds be
specified (but doesn't actually use them)

o The user may attempt to specify a non-UTC time zone (such as EDT, PST, etc.)

® The user may ask for a channel that doesn't exist (or at least a channel which they haven't purchased)

Sanity Checking

No
—‘)-(Display Error Message)

(Display Error Message)

No
—)-(Display Error Message)

Req Start >
Earliest Available

No
=

Req End <=
Current Time

Rewrite Ending
Datetime To Now

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

13
1I-3. Leveraging 3" Party Libraries For Specialized Capabilities

In order to successfully build our sample clients, there were several capabilities we needed, most notably:

® An ability to make SSL/TLS-encrypted HTTP POST connections to the SIE-Batch APl web site
* The ability to extract elements from JSON-encoded objects returned in response to queries

When the programming language or scripting language we used didn't offer those capabilities natively, we used third
party libraries. The challenge in doing so is often one of deciding WHICH third party library to use, since often there are
multiple competing options. In this case, we've selected:

SSL/TLS Libraries:
o (C: libcurl (see https://curl.haxx.se/libcurl/)
e Perl: LWP (see https://metacpan.org/pod/LWP)
e Python 3: pycurl (see http://pycurl.io/)
e Ruby typhoeus (see https://github.com/typhoeus/typhoeus)

We picked libcurl because it is a well established library that we'd used in previous examples (see "Making Programmatic
DNSDB Queries With libcurl,"
https://www.farsightsecurity.com/txt-record/2016/11/04/stsauver-dnsdb-libcurl/).

pycurl and typhoeus wrap libcurl for Python3 and Ruby, respectively, making them natural choices for those
implementations.

We picked LWP::UserAgent just to "be a little different" when it came to picking a library for Perl.

There are other alternatives in each case that may also be worth evaluating, such as LWP::Curl or Net::Curl::Easy for
Perl, or curb (https://github.com/taf2/curb) for Ruby. Feel free to experiment or use whatever works best for you.

JSON Libraries:

When it comes to working with JSON objects, we similarly had a number of options. We picked:

e C parson (see https://github.com/kgabis/parson)
e Perl: JSON (see https://metacpan.org/pod/JSON)
e Python 3: json (built-in package)

* Ruby: json (built-in package)

Some alternatives you may want to consider include:

e C: JSON-C (see https://github.com/json-c/json-c)
Jsmn (see https://github.com/zserge/jsmn) or
Jansson (see https://github.com/akheron/jansson).

e Perl: A list of JSON implementations for Perl can be found at https://perlmaven.com/json
e Python 3: orjson (see https://github.com/ijl/orjson)
RapidJSON (see https://github.com/python-rapidjson/python-rapidjson)
®* Ruby: See the assessment of options at https://www.ruby-toolbox.com/categories/JSON_Parsers

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

14
11-4. Miscellaneous Program Design Considerations

Command Line Arguments At Program Invocation: Given the simple command line interface, we did not use
getopt/getopt_long and named command line arguments, we just pick up positional arguments from ARGV. (If we had a
more complex command line grammar, we might have needed to use getopt/getopt_long)

Endpoint and Proxies? We know that some of you need to connect to a non-standard endpoint or connect through a
proxy. We've handled that explicitly in our code (note the endpoint and useproxy variables in the source for each
implementation). We assume that if you're using a proxy that it is a SOCKS5 proxy at 127.0.0.1 on port 1080, as would

typically result from saying:

$ ssh -D 127.0.0.1:1080 bastionhost.example.com

If need be, you can obviously tailor that (see also https://ec.haxx.se/libcurl/libcurl-proxies)

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

Section lll. Installing The Clients

Note: The clients all do the same thing. You don't need all of them, just install the client in the language you prefer.

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

15

16
lll-1. Installing the Ruby (sie_get_rb) Client

1) Copy sie_get_rb from Appendix IV, or download it from:
https://github.com/farsightsec/blog-code/tree/master/sie_get_clients/sie_get_ruby

2) Put your SIE-Batch APl key into ~/ . sie—-get-key.txt and make sure it isn't readable by others:
$ chmod wu=r,go-rwx ~/.sie-get-key.txt

3) Install Ruby and any required Ruby gems (what you actually need to install will depend on whether you already
routinely use Ruby). On the Mac, for example, assuming you use the Homebrew package manager (see
https://brew.sh/) you'd say:

$ brew install ruby
$ sudo gem install typhoeus

4) We assume the IP address of the host you're using to access SIE Batch has been explicitly whitelisted by Farsight.

[IF NOT, but you at least have ssh access to a host that has been, you'll need to enable proxy support in the client, then
create an ssh tunnel to that bastion host. To enable proxy support in the client, edit the Ruby source code. Find the
useproxy line and change it to be true, then save the modified file. When you want to use the client via that proxy,
you'll need to create an SSH tunnel to it. Assuming the bastion host is bastionhost .example.com, create a SOCKS5
ssh tunnel to it by saying (in another window): $ ssh -D 127.0.0.1:1080 bastionhost.example.com]

5) Now install the Ruby script to a directory in your path and make it executable:

$ sudo cp sie_get_rb.rb /usr/local/bin/sie_get_rb
$ sudo chmod a+rx /usr/local/bin/sie_get_rb

6) You're now ready to try the client:

$ sie_get_rb < see usage summary
$ sie_get_rb checkkey < verify your API key
$ sie_get_rb channels < get list of channels

Note: to actually retrieve data for a channel, you'll need to be subscribed to that channel, and you'll have to ask for data
from a date range that's available.

$ sie_get_rb 212 < details for a channel (e.g., date range available)
$ sie_get_rb 212 now 5 < grab 5 minutes of ch212
$ sie_get_rb 212 "2020-01-28 19:17:00" "2020-01-28 19:22:00" < grab data for a specific time range

Output will be to a file in your current directory. That filename will be something like the following:
sie-ch212-{2020-01-18@21:22:19}-{2020-01-18@21:32:19}.jsonl

7) Feedback/comments/questions? Please email <st sauver@fsi.io>

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

17
111-2. Installing the Python 3 (sie_get_py) Client

1) Copy sie_get_py from Appendix V, or download it from:
https://github.com/farsightsec/blog-code/tree/master/sie_get_clients/sie_get_python

2) Put your SIE-Batch APl key into ~/.sie—-get-key.txt and make sure it isn't readable by others:
$ chmod wu=r,go-rwx ~/.sie-get-key.txt

3) You likely already have Python 3 (in fact, perhaps even multiple copies of Python 3). The script will use the version
that it finds first in your path. However, you can easily install a new copy should you need or desire to do so. For
example, if you're on a Mac and use Homebrew (see https://brew.sh/) to manage your packages, you'd say:

$ brew install python3

4) Now install the python modules we'll need:

$ sudo pip3 install datetime
$ sudo pip3 install pathlib
$ sudo pip3 install pycurl

5) We assume the IP address of the host you're using to access SIE Batch has been explicitly whitelisted by Farsight.

[IF NOT, but you at least have ssh access to a host that has been, you'll need to enable proxy support in the client, then
create an ssh tunnel to a bastion host that has access. To enable proxy support in the client, edit the Python source
code. Find the useproxy line, change it to be True and save the modified file. When you want to use the client via that
proxy, create an SSH tunnel to the proxy Assuming the bastion host is bastionhost .example.com, create a SOCKS5
ssh tunnel to it by saying (in another window): $ ssh -D 127.0.0.1:1080 bastionhost.example.com]

6) Install the Python script to a directory in your path and make it executable:

$ sudo cp sie_get_py.py /usr/local/bin/sie_get_py
$ sudo chmod a+rx /usr/local/bin/si_get_py

7) Try the Python client:

$ sie_get_py €< see usage summary
$ sie_get_py checkkey < verify key
$ sie_get_py channels < get list of channels

Note: to actually retrieve data for a channel, you'll need to be subscribed to that channel, and you'll have to ask for data
from a date range that's available.

$ sie_get_py 212 < details for a channel (e.g., date range available)
$ sie_get_py 212 now 5 < grab 5 minutes of ch212
$ sie_get_py 212 "2020-01-28 19:17:00" "2020-01-28 19:22:00" < grab data for a specific time range

Output will be to a file in your current directory. That filename will be something like the following:
sie-ch212-{2020-01-18@21:22:19}-{2020-01-18@21:32:19}.jsonl

8) Feedback/comments/questions? Please send email to <stsauver@fsi.io>

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

18
111-3. Installing the Perl (sie_get_pl) Client

1) Copy sie_get_pl from Appendix VI, or download it from:
https://github.com/farsightsec/blog-code/tree/master/sie_get_clients/sie_get_perl

2) Put your SIE-Batch APl key into ~/.sie—-get-key.txt and make sure it isn't readable by others:
$ chmod wu=r,go-rwx ~/.sie-get-key.txt

3) You likely already have per1 installed (in fact, perhaps even multiple copies of per1). The script assumes you want
/usr/local/bin/perl, but feel free to change the first line of the script to taste. If you want a more-current version
of per1l than you may otherwise have, assuming you're on the Mac and using brew (see https://brew.sh/), try:

$ brew install perl

4) Now install/update the per1 modules we'll be using from CPAN (these are broken onto 3 lines to avoid wrapping):

$ sudo cpan —-i Carp Data::Structure::Util DateTime DateTime: :Format: :Strptime
$ sudo cpan -i File::HomeDir JSON LWP LWP::UserAgent Scalar::Util TimeDate
$ sudo cpan -i Time::ParseDate POSIX POSIX::strftime::GNU

5) We assume the IP address of the host you're using to access SIE Batch has been explicitly whitelisted by Farsight.

[IF NOT, but you at least have ssh access to a host that has been, you'll need to enable proxy support in the client, then
create an ssh tunnel to a bastion host that has access. To enable proxy support in the client, edit the Perl source code.
Find the my Suseproxy = '0'; # '0' is falselineandchangeittobe '1"' instead of '0'. Save the modified
file. When you want to use the client via that proxy, create an SSH tunnel to the proxy Assuming the bastion host is
bastionhost.example.com, create a SOCKS5 ssh tunnel to it by saying (in another window):

$ ssh -D 127.0.0.1:1080 bastionhost.example.com]

6) Now install the Perl script to a directory in your path and make it executable:

$ sudo cp sie_get_pl.pl /usr/local/bin/sie_get_pl
$ sudo chmod a+rx /usr/local/bin/sie_get_pl

7) Try the client

$ sie_get_pl €< see usage summary

$ sie_get_pl checkkey < verify key

$ sie_get_pl channels < getlist of channels

Note: to get data for a channel, you need to be subscribed to it, and ask for data from a date range that's available.
$ sie_get_pl 212 < get the details for a channel (e.g., date range available)

$ sie_get_pl 212 now 5 < grab 5 minutes of ch212

$ sie_get_pl 212 "2020-01-28 19:17:00" "2020-01-28 19:22:00" < grab data for a specific time range

Output will be to a file in your current directory. That filename will be something like the following:
sie-ch212-{2020-01-18@21:22:19}-{2020-01-18@21:32:19}.3jsonl

8) Feedback/comments/questions? Please email <stsauver@fsi.io>

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

19
l1l-4. Installing the C (sie_get_c) Client

1) Copy the C code for sie_get_c from Appendix VII, or download sie_get c from:
https://github.com/farsightsec/blog-code/tree/master/sie_get_clients/sie_get_c

2) Put your SIE-Batch APl key into ~/ . sie—-get-key.txt and make sure it isn't readable by others:
$ chmod wu=r,go-rwx ~/.sie-get-key.txt

3) We assume that you have a working C development environment. If not, you'll need to install a C compiler and
supporting tools. For example, on a Mac, this normally implies installing Xcode: https://developer.apple.com/xcode/

cd into that directory that has the source code for the client, review the Makefile and tweak any defaults you don't like.
4) We assume the IP address of the host you're using to access SIE Batch has been explicitly whitelisted by Farsight.

[IF NOT, but you at least have ssh access to a host that has been, you'll need to enable proxy support in the client, then
create an ssh tunnel to a bastion host that has access. To enable proxy support in the client, edit sie_get_c.h

Find char useproxy[] = "no"; /* "yes" or "no" */ andchange 'no' to 'yes'. Save the modified file.
When you want to use the client via that proxy, create an SSH tunnel to the bastion host. Assuming the bastion host is
bastionhost.example.com, create a SOCKSS5 ssh tunnel to it by saying (in another window):

$ ssh -D 127.0.0.1:1080 bastionhost.example.com]

5) Build and install the executable with:

S make
$ sudo make install
S make clean

6) Try the client:

$ sie_get_c < see usage summary
$ sie_get_c checkkey < verify key
$ sie_get_c channels < get list of channels

Note: to get data for a channel, you need to be subscribed to it, and ask for data from a date range that's available.

$ sie_get_c 212 < details for the channel (e.g., date range available)
$ sie_get_c 212 now 5 € grab 5 minutes of ch212
$ sie_get_c 212 "2020-01-28 19:17:00" "2020-01-28 19:22:00" < grab data for a specific time range

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

Section IV. Conclusion

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

20

21
This project is a bit of an experiment. We hope that providing the sample programs in this document helps bootstrap
those who'd like to develop their own code to access SIE-Batch API, and we hope it also proves useful as a simple
command-line interface to SIE-Batch.

We've tried to be very candid about our thinking, and hope that you find yourself at least able to "live with" our choices
even if you may disagree with some of them (we know, for example, that choice of formatting styles, and choice of third

party supporting libraries can be quite contentious, right up there with questions like "what sort of BBQ is best?")

In any event, we welcome feedback "from the field" on these programs, and would love to hear about your experiences
with them. We hope that they will provide a painless introduction to working with SIE-Batch API.

Acknowledgements

We'd like to thank our colleagues Mr. Tyler Wood and Mr. Chuqg Von Rospach for their helpful comments in reviewing a
draft of this document. Any remaining errors are solely the responsibility of the author.

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

Appendix I. Building nmsgtool from Source For Mac OS Catalina

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

22

23
Building nmsgtool on Mac OS X Catalina from Source... Version 1.0

Before attempting any part of the following installation, please back up your Mac!

1) Creating A Build Environment

You need to have Xcode command line tools installed so you'll have access to the C compiler and related software
libraries you'll need. You can install Xcode from the Apple App Store, or you can just install the command line tools from
the command line. We'll do the latter in this case.

$ xcode-select —-install

Note: please do NOT type the dollar-sign prompt shown in front of any command in this Appendix.

If you see:

xcode-select: error: command line tools are already installed, use "Software Update" to install updates

that means that you've already got the command line tools installed.

You may still need to agree to the license terms if you've not done so already:

$ sudo xcodebuild -license

[enter your admin password]

[scroll through the license]

agree

2) Install The Homebrew Package Manager.

Homebrew (or normally just "brew") is a popular Mac package manager, and well help to help bootstrap the installation
of some of the other required software packages.

$ /usr/bin/ruby -e
"$ (curl -£fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"

[the above command is all one line, it just wrapped as shown here due to the limited width of the page]

Ensure that brew is up-to-date (it should already be if you just installed it, but if you've had it around for a while, it's
good to double check/get up-to-date).

$ brew update
$ brew upgrade

3) Install wget

We'll now begin installing the other stuff we'll need. Some of the software we need can be installed via brew.

We need wget in order to have a command line web tool to retrieve some packages...

$ brew install wget

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

24
wget also requires an SSL/TLS certificate bundle for its trust anchors. We retrieve a copy of a reasonable cert bundle by
saying:

$ wget —-no-check-certificate https://curl.haxx.se/ca/cacert.pem

Now we'll make create the directory /usr/local/share/curl, copy the cert bundle to that directory, and make sure it's
readable:

$ sudo mkdir /usr/local/share/curl

[enter root password]

$ sudo cp cacert.pem /usr/local/share/curl

$ sudo chmod a+r /usr/local/share/curl/cacert.pem

Curl now needs to be told where to find that cert bundle. We can tell the current shell to find them by saying:

$ export SSL_CERT_FILE="/usr/local/share/curl/cacert.pem"
Do the above command now. That command will be in effect for the duration your current window is open.

To also make your system remember that setting, e.g., to make it "permanent,”" add that line to your .profile file

$ ed

$ nano .profile ¢ if you prefer a different editor, you can use it instead
[scroll to the bottom of that file]

export SSL_CERT FILE="/usr/local/share/curl/cacert.pem"

[ctrl-0] € write the file

[ctrl-X] € exit from nano

4) Install Additional Command Line Utilities and Packages

Now let's use brew to install some other command line utilities and packages we'll need:

brew install autoconf
brew install automake
brew install binutils
brew install bison

brew install check

brew install cmake

brew install doxygen
brew install ghostscript
brew install graphviz
brew install libpcap
brew install libtool
brew install pkgconfig
brew install yajl

brew cask install mactex

vy Ur Uy 0 Uy Uy Oy U Oy Oy Oy Oy O O

5) Install Stuff We Need To Build From Sources (And Required Dependencies)

Some of the rest of the software that we also need, we'll need to build from source.

We'll do that now. These packages all have dependencies. This means that we need to build them in the right order, or
the packages will complain that stuff they need is missing.

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

In general, at least for this section, we'll be:

-- cloning a Github repository

-- changing down into the directory where those files were copied
-- running autogen to make the configure script

-- running configure to make the make files

-- running make to compile the code

-- using sudo to install the compiled software

-- returning to the default home directory

Exceptions to that general approach will usually be highlighted in red (we'll also try to highlight things that are
particularly easy to overlook or get wrong).

The first things we'll try installing that way are protobuf, protobuf-c, and wdns:

git clone https://github.com/google/protobuf.git
cd protobuf

sh autogen.sh

./configure

make

sudo make install

cd

Uy Ur U U0 U Uy O

git clone https://github.com/protobuf-c/protobuf-c.git
cd protobuf-c

sh autogen.sh

./configure

make

sudo make install

cd

v U U 0y Uy O

git clone https://github.com/farsightsec/wdns.git
cd wdns

sh autogen.sh

./configure

make

sudo make install

cd

U U U Uy Uy Oy >

We're now ready to install nmsg (it requires protobuf, protobuf-c, andwdns)

git clone https://github.com/farsightsec/nmsg.git
cd nmsg

sh autogen.sh

./configure -without-libxs

make

make html

sudo make install

cd

vy Ur U U0 Uy Uy Uy >

Now let's do sie-nmsg (it requires nmsg, protobuf-c, and wdns)

$ git clone https://github.com/farsightsec/sie—-nmsg.git
$ cd sie-nmsg

$ sh autogen.sh

$./configure

$ make

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

25

$ sudo make install
$ ed

Now install OpenSSL:

$ wget https://www.openssl.org/source/openssl-1.1l.le.tar.gz

OpenSSL is particularly security sensitive, so we encourage you to verify the checksums for the file as shown below,
ensuring that the file you downloaded is correct and hasn't been tampered-with.

Always use the most recent version of OpenSSL 1.1, as shown at https://www.openssl.org/source/

$ shasum -a 256 openssl-l.l.le.tar.gz
694f61lacllcb51c9bf73£54e771££6022b0327a43bbdfalb2f19del662ab6dcbe openssl-1l.1l.le.tar.gz
$ wget https://www.openssl.org/source/openssl-1l.1.le.tar.gz.sha256

$ cat openssl-l.l.le.tar.gz.sha256
694f6lacllcb51c9bf73£f54e771££6022b0327a43bbdfalb2f19del662a6dcbe [confirm this value
matches what shasum reported..]

$ gunzip openssl-1l.1.0e.tar.gz

$ tar xfv openssl-1.1.0e.tar

$ cd openssl-1.1.0e

$./config [NOTE: not ./configure]
$ make

$

make test

[look for a final "Result: PASS"]
$ sudo make install

$ ed

Finally, build axa (requires nmsg, protobuf-c, sie-nmsg, wdns, and OpenSSL):

git clone https://github.com/farsightsec/axa.git
cd axa

sh autogen.sh

./configure

make

make doc

sudo make install

cd

Uy U»r Ur U Uy Oy Uy >

That should do it! Congratulations!

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

26

Appendix ll. Getting Channel Volume Summaries With sie_get_*

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

27

Checking Channel Volumes

sie_get_* can serve as a nice building block for broader analyses. Imagine a command file like:

$ cat check-volumes.py
sie_get_py 25
sie_get_py 27
sie_get_py 42
sie_get_py 204
sie_get_py 206
sie_get_py 207
sie_get_py 208
sie_get_py 211
sie_get_py 212
sie_get_py 213

We can run it with:

$ bash check-volumes.py > temp.txt
$ more temp.txt

25 "2020-03-01 03:09:00"™ "2020-03-01 22:36:00" 21,678,555

27 "2020-03-01 03:09:00" "2020-03-01 22:35:03" 1,476,344

42 "2020-03-01 03:10:00"™ "2020-03-01 22:36:03" 48,065,411,292
204 "2020-03-01 10:21:03" "2020-03-01 22:36:00" 98,432,360, 388
206 "2020-03-01 10:21:00" "2020-03-01 22:36:00" 47,700, 952,748
207 "2020-03-01 10:21:03" "2020-03-01 22:36:00" 99,674,838,790
208 "2020-03-01 10:21:04" "2020-03-01 22:36:00" 116,793,747,711
211 "2020-03-01 03:09:59" "2020-03-01 22:36:00" 1,284,373,715
212 "2020-03-01 03:10:00" "2020-03-01 22:36:03" 213,300,363
213 "2020-03-01 03:10:00" "2020-03-01 22:36:03" 8,235,193,961

Which channels have the most data available? Sort in descending order by volume:

$ sort —-field-separator='"' -k5r < temp.txt
208 "2020-03-01 10:21:04" "2020-03-01 22:36:00" 116,793,747,711
207 "2020-03-01 10:21:03" "2020-03-01 22:36:00" 99,674,838,790
204 "2020-03-01 10:21:03" "2020-03-01 22:36:00" 98,432,360,388
42 "2020-03-01 03:10:00" "2020-03-01 22:36:03" 48,065,411,292
206 "2020-03-01 10:21:00" "2020-03-01 22:36:00" 47,700, 952,748
213 "2020-03-01 03:10:00" "2020-03-01 22:36:03" 8,235,193,961
211 "2020-03-01 03:09:59" "2020-03-01 22:36:00" 1,284,373,715
212 "2020-03-01 03:10:00" "2020-03-01 22:36:03" 213,300,363
25 "2020-03-01 03:09:00" "2020-03-01 22:36:00" 21,678,555
27 "2020-03-01 03:09:00" "2020-03-01 22:35:03" 1,476,344

What channels have the highest data rate? We'll use a little ruby script to see...

$ cat read-time.rb
#!/usr/bin/env ruby
require 'date'
print "Chan Earliest Latest ",
" Minutes Octets Rate\n"
while STDIN.gets
values = $_.split('"")
channel = values|[0]
x = DateTime.parse (values[l])
y = DateTime.parse (values[3])
duration_in_min = ((y - x) * (24 * 60)).to_f.round(0)

volume_without_commas = values([4].txr(',' , '")

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

rate=volume_without_commas.to_f / duration_in_min.to_f

print channel, x.strftime('%Y-%m-%d $H:%$M:%3')," ",
y.strftime ('$Y-%m-%d $H:%M:%s')," ",
'$5.0f' % duration_in_min," ",
'$14.0f"' % volume_without_commas, "%12.0f" % rate, "\n"
end
$ ruby read-time.rb < temp.txt | sort —-k7n
Chan Earliest Latest Minutes Octets Rate
27 2020-03-01 03:09:00 2020-03-01 22:35:03 1166 1476344 1266
25 2020-03-01 03:09:00 2020-03-01 22:36:00 1167 21678555 18576
212 2020-03-01 03:10:00 2020-03-01 22:36:03 1166 213300363 182933
211 2020-03-01 03:09:59 2020-03-01 22:36:00 1166 1284373715 1101521
213 2020-03-01 03:10:00 2020-03-01 22:36:03 1166 8235193961 7062774
206 2020-03-01 10:21:00 2020-03-01 22:36:00 735 47700952748 64899255
42 2020-03-01 03:10:00 2020-03-01 22:36:03 1166 48065411292 41222480
204 2020-03-01 10:21:03 2020-03-01 22:36:00 735 98432360388 133921579
207 2020-03-01 10:21:03 2020-03-01 22:36:00 735 99674838790 135612026
208 2020-03-01 10:21:04 2020-03-01 22:36:00 735 116793747711 158903058
Simplifying that output further:
$ cat simplified output.rb
#!/usr/bin/env ruby
require 'date'
print "Chan Minutes Octets\n"
while STDIN.gets
values = $_.split('"")
channel = values[0]
x = DateTime.parse(values[1l])
y = DateTime.parse (values[3])

x) * (24 * 60)).to_f.round(0)
values[4] .tr (', ')

duration_in_min," ",

duration_in_min = ((y -
volume_without_commas =
print channel, '%5.0f' %

'$14.0f' % volume_without_commas, "\n"

end
$ ruby simplified output.rb < temp.txt | sort -k3n
Chan Minutes Octets

27 1166 1476344

25 1167 21678555

212 1166 213300363

211 1166 1284373715

213 1166 8235193961

206 735 47700952748

42 1166 48065411292

204 735 98432360388

207 735 99674838790

208 735 116793747711

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

Appendix lll. Miscellaneous Program Design Notes

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

30

31
App llI-1. String Handling and Other Programmatic Considerations in C

String handling in C is a non-trivial task. Simon Tatham, author of the terminal emulator Putty, wrote:

"String handling in C is very, very primitive by the standards of almost any other language." [* * *] "You're
probably thinking, by now, that C sounds like a horrible language to work in. It forces you to do by hand a lot of
things you're used to having done for you automatically; it constantly threatens you with unrecoverably weird
3lehavior, hard-to-find bugs, and dangerous security holes if you put one foot across any of a large number of
completely invisible lines that neither the compiler nor the runtime will help you to avoid; and, for goodness'
sake, it can't even handle strings properly. How could anyone have designed a language that bad?
[explanation/discussion omitted here]"

(see https://www.chiark.greenend.org.uk/~sgtatham/cdescent/)

We agree that C can be a challenging language to use when working extensively with strings. It is easy to write code
that's either insecure or unstable, and some of the fixes for some of those issues may be incompletely-standardized.

In other cases, even basic higher-level string functions (such as extracting a substring, or searching for matches in an
array of strings, or replacing characters in a string) may require supplemental routines. We want to be explicit about
how we decided to address those challenges in our sample C code:

e Secure alternatives to strcat and strcpy: The stock strcat and strcpy commands are well known for being
potentially dangerous. (See chapter 2 of "Secure Coding in C and C++, 2" Edition," conveniently available as a
sample chapter at https://resources.sei.cmu.edu/asset_files/BookChapter/2005_009_001_52710.pdf,

146 pages).

To help deal with this issue, strcat and strcpy were augmented with strncat and strncpy. But since strncat and
strncpy don't guarantee null termination for strings, they're still "less than ideal" (see for example "Stop using
strncpy already!", https://randomascii.wordpress.com/2013/04/03/stop-using-strncpy-already/).

stricpy and strlcat are generally accepted as being a better option. One discussion: "strlcpy and strlcat—
Consistent, Safe, String Copy and Concatenation" by Todd C. Miller (U. Colorado, Boulder) and Theo de Raadt
(OpenBSD project) at https://pdfs.semanticscholar.org/f9cb/fd6575f89433f9ad80498a8328e4311ebba3.pdf

Mac OS X, being rooted in BSD, has stricpy and strlcat natively. Those of you running in some other
environments may not. (If curious why not, see for example "The ups and downs of stricpy()" at
https://lwn.net/Articles/507319/) An easy way to get strlcat and strlcpy (if you don't already have them
natively) is by downloading and including:

-- http://cvsweb.openbsd.org/cgi-bin/cvsweb/src/lib/libc/string/stricat.c
-- http://cvsweb.openbsd.org/cgi-bin/cvsweb/src/lib/libc/string/stricpy.c

e Other Miscellaneous String Routines: Checking To See If A String Looks Like It Might Be A Number:
We used the Rosetta code implementation of isNumeric.c, see

https://rosettacode.org/wiki/Determine_if_a_string_is_numeric#C

¢ Finding The Position (Index) of A Complete String In A List ("Array") of String Values:
We're using: https://rosettacode.org/wiki/Search_a_list#C

e Extract A Substring From A Larger String (Given A Starting Point, Length of Substring): We're using code shown
at https://stackoverflow.com/questions/2114377/strings-in-c-how-to-get-substring for this

¢ Replacing A Substring That's Part of a String: We're using https://creativeandcritical.net/str-replace-c for this

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

32
Function Arguments and Returned Values: Some of the languages used in this project, such as C, are only able to return
a single value from a function. Yes, you can overcome that limitations by creating data structures and returning just a
single combined struct. However, doing so adds complexity and opportunities for error, the opposite of what's intended.

Thus, by way of compromise, in at least some cases we used global variables to ensure some commonly needed bits
were consistently available and updateable. Some of you may not like that approach; if so, feel free to refactor out
those globals. With this note, we're explicitly alerting you to the fact that they're there.

Dynamic Vs Static Variables: Another area where errors commonly occur in C relates to the use dynamically allocated
memory. A nice summary of common errors can be seen at "C/C++ Memory Corruption And Memory Leaks," see
http://www.yolinux.com/TUTORIALS/C++MemoryCorruptionAndMemoryLeaks.html

Since these programs are "one-shot" routines, we didn't worry too much about inefficiency or inelegance and have just
created static arrays where doing that is feasible and offered opportunities for simplification.

The "Take Away" For This Section: If all of the above seems medieval (and it can be), consider using one of the script-
based alternatives to C such as Ruby, Python or Perl. It can be somewhat unfair to compare total lines of code since
things like commenting and code structuring can greatly expand (or reduce) the size of raw code, but we'd still note:

$ cat *.c | we -1 (manually subtracting out 2665 lines of reformatted parson.c and 242 lines of parson.h)
4238 [-2665-242=1331]
$ cat *.pl | wec -1

612
$ cat *.rb | we -1
533
$ cat *.py | we -1
471

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

33
App llI-2. Code Formatting

Speaking of code formatting, we made a conscious effort to tidy the code for this project. To do that we selected:

Language Tool Settings File Tool Home
e C uncrustify ~/.uncrustify.cfg https://github.com/uncrustify/uncrustify
Processed with: $ uncrustify -no-backup $(find . -name "*.[ch]")
e Perl perlcritic .perlcritic https://metacpan.org/pod/perlcritic

Processed with: $ perlcritic —--brutal --profile .perlcritic *.pl

e Python pylint .pylintrc https://www.pylint.org/
Processed with: $ pylint --rcfile=.pylintrc sie_get_py.py

¢ Ruby: Rubocob .rubocop.yml https://docs.rubocop.org/en/stable/
Processed with: $ rubocop -c .rubocop.yml sie_get_rb.rb

Even if your preferred policy doesn't perfectly align with ours, we hope the use of a consistent format is still helpful.

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

Appendix IV. sie_get_rb client source code

This Source Code Form is subject to the terms of the Mozilla Public License, v. 2.0. If a copy of the MPL was not
distributed with this file, you can obtain one at https://mozilla.org/MPL/2.0/

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

34

35
$ cat sie_get_rb.rb
#!/usr/bin/env ruby

require 'Typhoeus'
require 'Jjson'
require 'date'
require 'set'

the SIE-Batch API endpoint is NOT routinely globally accessible

#

your IP must be explicitly whitelisted (or use a proxy server that
has been authorized access). If using a proxy server, ssh into that
bastionhost before running this script:

#

$ ssh -D 127.0.0.1:1080 bastionhostname

useproxy = true

endpoint = 'batch.sie-remote.net'

FUNCTIONS
#

functions appear in order by dependency (to-be called fn precedes calling fn)

def getkeyfromlocalfile
build the filepath pointing at the SIE-Batch API key in the user's homedir
filepath = Dir.home + '/.sie-get-key.txt'

make sure the SIE-Batch API key file exists
unless File.exist? (filepath)

abort ("\nERROR:\n\n No SIE-Batch API keyfile at ' + filepath)
end

open that key file and read the SIE-Batch API key
file = File.open(filepath)

myapikeyval = file.read.chomp

file.close

return myapikeyval
end

def make_query (useproxy, queryUrl, queryParams)
actually handle making the http/https query against the endpoint

myqueryURL = queryUrl.dup.to_s
mygqueryParams = queryParams.dup.to_s

(other Typhoeus options defined:
https://github.com/typhoeus/ethon/blob/master/lib/ethon/curls/options.rb)

if useproxy == true

request = Typhoeus::Request.new(\
myqueryURL, \
method: :post, \
headers: { 'Application' => 'application/json', \

'User—-Agent' => 'sie_get_rb/1.0" }, \

body: myqueryParams, \
connecttimeout: 10, \
ipresolve: :v4, \
proxy: 'http://127.0.0.1:1080"', \

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

proxytype: 'socksb5' \

)

else

request = Typhoeus::Request.new(\
myqueryURL, \
method: :post, \
headers: { 'Application' => 'application/json', \

'User—-Agent' => 'sie_get_rb/1.0"' }, \

body: myqueryParams, \
connecttimeout: 10, \
use_ssl: :all, \
ssl_verifypeer: true \

)

end

try validating the API key up to 3 times

response = nil

tries = 3

while tries >= 1
response = request.run

if successful, break out of the attempt loop and proceed
if response.code == 200
break
elsif response.code == 403
abort ("Response Code 403: Bad SIE-Batch API Key?")
end

if not, try again at least two more times

tries =1
if response.code.zero? || tries.zero?
abort ('HTTP error (retried three times)')
end
end
return response.body
end
__

def validateapikeyonline (endpoint, useproxy)
after getting the API key from the local key file, is it wvalid? We'll check
online

myapikeyval = getkeyfromlocalfile

queryURL = 'https://' + endpoint + '/siebatchd/vl/validate'
queryParams = { 'apikey' => myapikeyval }.to_json
response = make_query (useproxy, queryURL, queryParams)
json_query_object = JSON.parse (response)
status = json_query_object['_status']
return status

end

def format_and_printout_the_chan_ list (chan_list)
this routine actually formats and writes out the channel listing
new_hash = {}
chan_list.each do |key, value|
tempstring = (key.to_s + value.to_s)
tempstring = tempstring.sub('ch', '")
tempstring = tempstring.sub('{"description"=>""', ' ')

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

36

tempstring = tempstring.sub('"}', '")
delim = tempstring.index (' ")
strleng = tempstring.length
left pad the channel number to a width of 3
keystring = tempstring[0, delim].rjust (3, ' ")
valstring = tempstring[delim + 1, strleng]
new_hash[keystring] = valstring

end

new_hash = new_hash.sort
new_hash.each do |keystring, valstring]|
printf ("$s %s\n", keystring, valstring)
end
end

def list_channels (endpoint, useproxy)
this routine gets the list of live channels from the API server

myapikeyval = getkeyfromlocalfile

queryUrl = 'https://' + endpoint + '/siebatchd/vl/validate'
queryParams = { 'apikey' => myapikeyval }.to_json
response = make_query (useproxy, queryUrl, queryParams)
json_query_object = JSON.parse (response)
obj = json_query_object['profile']['siebatch']
format_and_printout_the_chan_list (obj)
exit (0)

end

https://stackoverflow.com/questions/23169510/adding-commas-to—numbers—-in-ruby
#
def add_commas (num_string)
utility routine to add commas to numeric strings for readability
num_string.reverse.scan(/\d{3}|.+/) .join(',"') .reverse
end

def format_and_printout_chan_time_limits(chan, earliest_time_string,
latest_time_string, volume)
take those channel status parameters and print them out in a little report

chan = chan.rjust (4, ' ")
volume = add_commas (volume.to_s)
could add a header, but it's pretty self-obvious, right?
printf ('chan earliest datetime latest datetime octets\n"')
printf ("%$s \"%s\" \"%s\" %s\n", chan, earliest_time_string,
latest_time_string, volume)
end

def show_intervals (endpoint, useproxy, chan_to_check)
each channel is available for a range of dates, and has an associated
data volume (so you'll know if you're potentially startng a huge download)

params = '{"apikey":"' +
getkeyfromlocalfile +
'","channels":[' +
chan_to_check +

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

']}'
url = 'https://' + endpoint + '/siebatchd/vl/siebatch/chdetails'

response = make_query (useproxy, url, params)
json_query_object = JSON.parse (response)
chan_to_check = 'ch' + chan_to_check
earliest_time_string =

json_query_object['channels'] [chan_to_check] ['earliest']
latest_time_string = json_query_object['channels'] [chan_to_check] ['latest']
chan_size = json_query_object['channels'] [chan_to_check]['size']

we return results as an array since Ruby is a return-one-—-arg-only language

timearray = Array.new(3)
timearray[0] = earliest_time_string
timearray[l] = latest_time_string
timearray[2] = chan_size
return timearray

end

def fixup_ending_datetime_in_the_future
Stop datetime from being out of range. Replacing with current GMT time.

format = "'%Y-%m—-%d %H:3M:%S'

epochseconds = Time.now

extraseconds = epochseconds.strftime('%$S")

endingtime_seconds = epochseconds.gmtime.to_i - extraseconds.to_i
endingtime = Time.at (endingtime_seconds) .gmtime.to_datetime
enddatetime = endingtime.strftime (format)

return enddatetime
end

def check_channel (endpoint, useproxy, chanflagstring, startdatetime, \
enddatetime)
make sure that the channel is available and the dates are in-range

get the available datetime range for this channel
(earliest_time_string, latest_time_string) = show_intervals (endpoint, \
useproxy, chanflagstring)

convert the requested and available START datetimes into Un*x seconds
requested_start_seconds = DateTime.parse (startdatetime) .to_time.to_i
earliest_date_seconds = DateTime.parse(earliest_time_string).to_time.to_1i

convert the requested and available END datetimes into Un*x seconds
requested_stop_seconds = DateTime.parse (enddatetime) .to_time.to_1
latest_date_seconds = DateTime.parse(latest_time_string) .to_time.to_1i

stop datetime must be later than start date time

if (requested_stop_seconds - requested_start_seconds) .negative?
abort ('Start datetime must be earlier than stop datetime')

end

requested start datetime must be >= the earliest data available
if (requested_start_seconds - earliest_date_seconds) .negative?
abort ('Start datetime out of range. Must be no earlier than ' + \

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

earliest_time_string)
end

end datetime may not be in the future; we fix it up by clamping

the end time to now if it is asking for something in the future

if (requested_stop_seconds - latest_date_seconds) .positive?
enddatetime = fixup_ending_datetime_in_the_future

end

handle return of the (potentially updated) datetimes here
another case of needing to pack multiple returns into an array
timearray = Array.new(2)
timearray[0] = startdatetime
timearray[l] = enddatetime
return timearray
end

def validate_input_time_date_format (mydatetime)
parameter is a datetime that we want to format check
1if invalid, abort run
if valid, return the validated (but unchanged) datetime (could skip
doing this for now, but at some point we might decide to fix up bad
string formatting as a convenience to the user, so...)

check the format with a regex

if !'(mydatetime =~ /\A\d{4}-\d{2}-\d{2}\ \d{2}:\d{2}:\d{2}\z/) .nil?
good starting time format

else
puts ('bad starting time format -- must be "YYYY-MM-DD HH:MM:SS"')
abort ('")

end

return mydatetime
end

def zero_unused_seconds (mydatetime)
since SIE-Batch API does not care about seconds, we force them to zero
mynewdatetime = mydatetime.sub! (/..$/, "00")
return mynewdatetime

end

def convert_relative_times_to_real_datetimes (enddatetime)

format = '%Y-%m—-%d $H:%M:%S'

the new "real" ending datetime comes from the current GMT time
epochseconds = Time.now

extraseconds = epochseconds.strftime('%S")

remove any "extra" seconds that would make the formatted time

non-zero

endingtime_seconds = epochseconds.gmtime.to_i - extraseconds.to_i

we compute the "real" starting datetime by offsetting backwards
we get minutes from the user, but need seconds

mysecondsback = enddatetime.to_i * 60

startseconds = endingtime_seconds - mysecondsback.to_1i

convert from epoch seconds back to datetime object
stageddatetime = Time.at (startseconds).gmtime.to_datetime

format the date time object as a time string

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

startdatetime = stageddatetime.strftime (format)

repeat conversion and formatting for the ending time
endingtime = Time.at (endingtime_seconds) .gmtime.to_datetime
enddatetime = endingtime.strftime (format)

pass as an array
timearray = Array.new(2)
timearray[0] = startdatetime
timearray[l] = enddatetime
return timearray

end

def fix_ times
starting and ending time arguments come in from the command line
so we don't pass them in as parameters when calling fix_times

standardize the starting and ending times from the command line
startdatetime ARGV [1l] .dup
enddatetime = ARGV[2].dup

if relative times, replace the ending time with the current GMT time
set the starting time back by the specified number of minutes

ensure results returned from convert_relative_times_to_real_datetimes
are correctly scoped/available routine-wide
timearray = Array.new(2)

if startdatetime == 'now'

timearray = convert_relative_times_to_real datetimes (enddatetime)
else

we have real timedate stamps for starting and ending datetimes

process the starting datetime value...

is the datetime value written in the right format?

also zero the seconds if present (SIE-Batch API doesn't use them)
validate_input_time_date_format (startdatetime)

startdatetime = zero_unused_seconds (startdatetime)

repeat for the ending datetime value...
validate_input_time_date_format (enddatetime)
enddatetime = zero_unused_seconds (enddatetime)

timearray[0] = startdatetime
timearray[1l] enddatetime
end

return timearray
end

def check_if_chan_is_an_nmsg_chan(chanflagstring)
some channels use JSON lines format, some use nmsg
this routine defines which is which
nmsg_channels = ['204', '206', '207', '208', '221'].to_set

if nmsg_channels.include? (chanflagstring)

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

filetype = '.nmsg'
else

filetype = '.jsonl'
end

return filetype
end

def build_filename (startdatetime, enddatetime)
construct the filename from the command line arguments and return it

chanflagstring = ARGVI[0] .dup
stringl = startdatetime.dup
string2 = enddatetime.dup

don't want spaces in the filename; could use something else, like 'T'
here instead, I suppose

stringl.sub! (' ', '@")
string2.sub! (' ', 'Q")
filetype = check_if_ chan_is_an_nmsg_chan (chanflagstring)
outputfilename = 'sie-ch' +
chanflagstring.to_s +
'7{' +

stringl.to_s +
B e
string2.to_s +
I}I +
filetype.to_s
return outputfilename
end

def print_usage_info
puts (
L |

Usage:

sie_get_rb channel "now" minutesBack
Example: sie_get_rb 212 now 15

OR

sie_get_rb channel "startdatetime" "enddatetime"
Example: sie_get_rb 212 "2020-01-07 00:13:00" "2020-01-07 00:28:00"

Convenience functions:

Check SIE-Batch API key: sie_get_rb checkkey

Get a listing of channels: sie_get_rb channels
Get datetime range and volume for a channel: sie_get_rb 212
Notes:

Datetimes are UTC and must be quoted. (Current UTC datetime: $ date -u)
Zero pad any single digit months, days, hours, minutes or seconds.
Seconds must be entered as part of the UTC datetimes (but are ignored)
Ending datetime in the future? It will be clamped to current datetime.

minutesBack must be >= 1 and a whole number

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

42

https://stackoverflow.com/questions/1235863/how-to-test-if-a-string-is-basically-an-
integer-in—-quotes-using-ruby

note: rubocop complains, but since I've basically taken this code verbatim,

I'm leaving it as is

rubocop:disable Naming/PredicateName
rubocop:disable Style/RedundantSelf
class String

def is_integer?

self.to_i.to_s == self

end
end
rubocop:enable Naming/PredicateName
rubocop:enable Style/RedundantSelf

def one_real_arg(endpoint, useproxy, first_arg)
because users can ask for channel info by specifying a channel
number, we need to know the list of defined channel numbers
defined_channels = ['24', '25', '27', '42', '80', '114', '115', \
'204', '206', '207', '208', '211', '212', '213', '214', '221'].to_set

if first_arg == 'channels'
list channels for the user
list_channels (endpoint, useproxy)
exit (0)

elsif first_arg == 'checkkey'
check the user's key for validity
status = validateapikeyonline (endpoint, useproxy)
puts ('API key status is ' + status)
exit (0)

elsif defined_channels.include? (first_arg)
list details about the specified channel
(earliest, latest, datasize) = show_intervals (endpoint, \

useproxy, first_arg)
format_and_printout_chan_time_limits (first_arg, earliest, \
latest, datasize)

exit (0)

elsif !defined_channels.include? (first_arg) && first_arg.is_integer?
the requested channel is not one we offer, so...
print ("Channel not offered via this script\n")
exit (0)

else
print_usage_info

end

exit (0)

end

def three_real_args(endpoint, useproxy)
We appear to actually be working on retrieving data....
chanflagstring = ARGV[0]

beat the datetimes into shape, if need be
(startdatetime, enddatetime) = fix times

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

be sure the requested channel and requested time range are good to go

(check the online server to make sure the channel exists, and the
start and end datetimes are sane)

(startdatetime, enddatetime) = check_channel (endpoint, useproxy, \
chanflagstring, startdatetime, enddatetime)

get the output filename
outputfilename = build_filename (startdatetime, enddatetime)

actually get the SIE-Batch data
param = JSON.generate\
({ 'apikey' => getkeyfromlocalfile, \

'channel' => chanflagstring.to_i, \

'start_time' => startdatetime, \

'end_time' => enddatetime })
url = 'https://' + endpoint + '/siebatchd/vl/siebatch/chfetch'
response?2 = make_query (useproxy, url, param)

write the SIE-Batch data out to our file

File.open (outputfilename, 'wb') do |[file|
file.write (response2)

end

exit (0)
end

#

main

command_line_arg_count = ARGV.length
if command_line_arg_count >= 1

first_arg = (ARGV[0]) .dup

end

if command_line_arg_count == 1
one_real_arg(endpoint, useproxy, first_arqg)
exit (0)

elsif command_line_arg_count ==
three_real_args (endpoint, useproxy)
exit (0)
elsif command_line_arg_count.zero? || (command_line_arg_count == 2) || \
(command_line_arg_count >= 4)
print_usage_info
exit (0)
end

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

43

$ cat .rubocop.yml

get current or go home

AllCops:
TargetRubyVersion: 2.6

Layout/ArgumentAlignment:
Enabled: false

Layout/ArrayAlignment :
Enabled: false

Layout/MultilineOperationIndentation:
Enabled: false

Layout/ParameterAlignment:
Enabled: false

Lint/AssignmentInCondition:
AllowSafeAssignment: false

Lint/ImplicitStringConcatenation:
Enabled: false

http://wiki.c2.com/?AbcMetric
Metrics/AbcSize:
Max: 30

Metrics/CyclomaticComplexity:
Max: 7

Metrics/MethodLength:
Max: 45

Metrics/PerceivedComplexity:
Max: 9

Naming/VariableName:
Enabled: false

Naming/MethodParameterName:
Enabled: false

Style/ConditionalAssignment:
Enabled: false

Style/FormatStringToken:
Enabled: false

We prefer to have the interpreter on the first line
Style/FrozenStringLiteralComment :
Enabled: false

We use a few intentionally, e.g., for SENDPOINT and S$SUSEPROXY

Style/GlobalVars:
Enabled: false

Style/GuardClause:
Enabled: false

Style/IfUnlessModifier:
Enabled: false

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

44

Style/ParenthesesAroundCondition:

AllowSafeAssignment: false

Style/RedundantReturn:
Enabled: false

Style/StringLiterals:
Enabled: false

Style/SymbolArray:
Enabled: true

Style/WordArray:
EnforcedStyle: brackets

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

45

Appendix V. sie_get_py client source code

This Source Code Form is subject to the terms of the Mozilla Public License, v. 2.0. If a copy of the MPL was not
distributed with this file, you can obtain one at https://mozilla.org/MPL/2.0/

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

46

$ cat sie_get_py.py
#!/usr/bin/env python3
"""This script demonstrates use of the SIE-Batch API from Python3"""

Lint with $ pylint sie_get_py.py (assumes .pylintrc file in dir)

import calendar

import datetime

from datetime import datetime
from io import BytesIO
import Jjson

from os import path

from pathlib import Path
import re

import sys

import time

from time import strftime
import pycurl

endpoint = 'batch.sie-remote.net'

useproxy = False # note: 'false' will not work

#

def getkeyfromlocalfile():
"""Retrieves the SIE-Batch API key"""

filepath = str(Path.home()) + "/.sie—-get-key.txt"

if not path.exists(filepath):
print ("\nERROR:\n\n No SIE-Batch API keyfile at "+filepath)
sys.exit (1)

with open(filepath) as stream:
myapikey = stream.read() .rstrip/()

return myapikey

def make_query(url, useproxy, params, outputfilename):
nn "make query" nn

if outputfilename != '-999':
try:
f = open(outputfilename, "wb")
except IOError:
sys.exit ("error opening output file for results")
else:
buffer = BytesIO()

= pycurl.Curl ()

.setopt (pycurl.URL, url)

.setopt (pycurl .HTTPHEADER, ['Content-Type: application/json'])
.setopt (pycurl.POST, True)

.setopt (pycurl.POSTFIELDS, params)

.setopt (pycurl .FOLLOWLOCATION, 1)

.setopt (pycurl.CONNECTTIMEOUT, 300)

.setopt (pycurl.TIMEOUT, 86400)

.setopt (pycurl .USERAGENT, 'sie_get_py/1.0")

Q00000000

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

we're going to write the actual data files directly to the outputfile
other stuff (apikey check, channel listing, etc.) we're Jjust going
to write to a buffer (and then read that))
if outputfilename == '-999':
c.setopt (pycurl .WRITEDATA, buffer)
else:
c.setopt (pycurl .WRITEDATA, f)

if useproxy:
c.setopt (pycurl.PROXY, '127.0.0.1")
c.setopt (pycurl.PROXYPORT, 1080)
c.setopt (pycurl.PROXYTYPE, pycurl.PROXYTYPE_SOCKS5)

tries = 3
rc = "'

while tries >= 1:
c.perform()
rc = c.getinfo (c.RESPONSE_CODE)

if writing to a buffer, we need to extract results and change
from a bytestring to a string
if outputfilename == '-999':

body = buffer.getvalue ()

content = body.decode('iso-8859-1")

successful transfer? if so, break out of the loop
if not, try it again
#pylint: disable=no-else-break
if rc == 200:
break
else:
print ('Problem in make_qguery: response code='+str (rc))

#pylint: disable=no-else-return
if outputfilename == '-999':
return content
else:
sys.exit (0)
#pylint: enable=no-else-break

def validateapikeyonline (endpoint, useproxy) :
""" check the API key for validity on the live SIE-Batch API server """
myapikeyval = getkeyfromlocalfile()

params = {'apikey' : myapikeyval}

params2 = Jjson.dumps (params)

queryURL = 'https://' + endpoint + '/siebatchd/vl/validate'
returned_content = make_query (queryURL, useproxy, params2, '-999'")
returned_content_Jjson_format = Jjson.loads (returned_content)

status = returned_content_json_format['_status']

return status

def format_and_printout_the_chan_list (chan_list):
""" we have the channel data, now format and print it out in a report
chan_1list_json_format = json.loads(chan_list)

nmmon

new_hash = {}
#pylint: disable=unused-variable

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

for k, v in chan_list_json_format.items () :
#pylint: enable=unused-variable
keystring = k.replace('ch', '")
keystring = keystring.rjust (3, ' ")
actual_val = chan_list_json_format[k]['description']
new_hash[keystring] = actual_val

for k, v in sorted(new_hash.items ()):
print (k, new_hash[k])

sys.exit (0)

def list_channels (endpoint, useproxy):
""" retrieve a list of channels from the server """
myapikeyval = getkeyfromlocalfile()

params = {'apikey' : myapikeyval}

params2 = json.dumps (params)

queryURL = 'https://' + endpoint + '/siebatchd/vl/validate'
returned_content = make_qguery (queryURL, useproxy, params2, '-999'")
returned_content_Jjson_format = Jjson.loads (returned_content)
extract_bit = returned_content_json_format['profile']['siebatch']
json_query_object = json.dumps (extract_bit)

format_and_printout_the_chan_list (json_qguery_object)
sys.exit (0)

def format_and_printout_chan_time_limits (chan, earliest_time_string, \
latest_time_string, volume) :
""" print a summary of available channel date range and volume """

take the channel status parameters and print them out in a little report

chan = chan.rjust (4)

if int (volume) >= 4:
volume = '{:,d}'.format (int (volume))
volume = volume.rjust (16)

could add a header, but it's pretty self-obvious, right?

printf ('chan earliest datetime latest datetime octets\n")
print (chan+' "'+earliest_time_string+'" "+\
'"'"+latest_time_string+'" '+volume)

sys.exit (0)

def show_intervals (endpoint, useproxy, chan_to_check):
""" get the starting and stopping date range and volume
with square brackets

newchan_to_check = '"[' + chan_to_check + ']'
no brackets, but with ch literal prefix
chan_with_prefix = 'ch' + chan_to_check

myapikeyval = getkeyfromlocalfile()

params = {'apikey': myapikeyval, 'channels': newchan_to_check}

params2 = Jjson.dumps (params)

{"channels":"[212]", "apikey":"blah"} needs to become

{"channels":[212],"apikey":"blah"} (e.g., no quotes around [chan])
params2 = params2.replace('"[', '[")

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

49

params2 = params2.replace(']l"', '1")

url = 'https://' + endpoint + '/siebatchd/vl/siebatch/chdetails'
response = make_query (url, useproxy, params2, '-999"'")
decoded_results = json.loads (response)
earliest_time_string = \

decoded_results|['channels'] [chan_with_prefix]['earliest']
latest_time_string = \

decoded_results|['channels'] [chan_with_prefix]['latest']
size_string = \

decoded_results|['channels'] [chan_with_prefix]['size']

return (earliest_time_string, latest_time_string, size_string)

def fixup_ending_datetime_in_the_future() :
""" if the ending date is in the future, reel it back in! """
Replace future times with the current GMT time.
The following returns a datetime structure

epochseconds = time.gmtime ()
enddatetime = time.strftime ('$Y-%m-%d $H:%$M:%S', epochseconds)
enddatetime2 = re.sub(r'..$', '00', enddatetime)

return enddatetime2

def string_fmt_time_to_seconds (string_format_time) :
""" oytility function to convert a string format time to epoch seconds """

dt = datetime.strptime(string_format_time, "$Y-%m-%d $H:%M:%3S")
epoch_seconds = calendar.timegm(dt.utctimetuple())

return epoch_seconds

def check_channel (endpoint, useproxy, chanflagstring, startdatetime, \
enddatetime) :
""" make sure that the channel is available and the dates are in-range """

get the available datetime range for this channel

#pylint:disable=unused-variable

(earliest_time_string, latest_time_string, chan_to_check) = \
show_intervals (endpoint, useproxy, chanflagstring)

#pylint:enable=unused-variable

convert the requested and available start datetimes into Un*x seconds
requested_start_seconds = string_fmt_time_to_seconds (startdatetime)
earliest_date_seconds = string fmt_time_to_seconds (earliest_time_string)
requested_stop_seconds = string_fmt_time_to_seconds (enddatetime)
latest_date_seconds = string_fmt_time_to_seconds (latest_time_string)

start datetime must be earlier than stop date time
if (requested_stop_seconds - requested_start_seconds) < 0:
sys.exit ('Start datetime must be earlier than stop datetime')

start datetime may not be earlier than earliest data available
if (requested_start_seconds - earliest_date_seconds) < 0:
sys.exit ('Start datetime out of range. Must be no earlier than ' + \
earliest_time_string)

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

end datetime may not be in the future

if (requested_stop_seconds - latest_date_seconds) > 0:
enddatetime = fixup_ending_datetime_in_the_future ()

return (startdatetime, enddatetime)

validate_input_time_date_format (mydatetime) :

""" make sure the user has followed the required datetime format

nmmon

parameter is datetime to format check. if invalid, abort run.

if valid, return the validated (but unchanged) datetime (could skip
doing this for now, but at some point we might decide to fix up bad
string formatting as a convenience to the user, so...)

check the format with a regex

if not (re.match (r'/\A\d{4}-\d{2}-\d{2}\ \d{2}:\d{2}:\d{2}\z2/", \

mydatetime), mydatetime) :

print ("bad starting time format —-- must be \"YYYY-MM-DD HH:MM:SS\"\n")

sys.exit (1)

return mydatetime

zero_unused_seconds (mydatetime) :

""" if seconds are non-zero in the time stamps, zero them out

nmmon

since SIE-Batch API does not care about seconds, we set them to zero
mydatetime2 = re.sub(r'..$', '00', mydatetime)

return mydatetime?2

convert_relative_times_to_real_datetimes (minutesback) :
""" one option is relative times; if we get one, make it a real time """
in relative format, the initial "ending time" is actually the minutes

worth of data we want to retrieve
the "real" ending datetime will be created
we will be doing math on the epoch seconds

myformat = '%Y-%m-%d FH:3%M:%S'
endingtime = time.gmtime ()
epochseconds = calendar.timegm(endingtime)

now compute the formatted ending date time
enddatetime = strftime (myformat, endingtime)

find just the seconds from that string
extraseconds = int (enddatetime[-2:])

from the current GMT time

in standard YYYY-MM-DD HH:MM:SS

subtract the seconds from the full datetime to end up with 00 seconds
endingtime_seconds = int (epochseconds) - extraseconds

let's now work on the starting time
we compute the "real" starting datetime by

offsetting backwards

our to-be-modified datetime is in epoch seconds, so convert min to seconds

mysecondsback = int (minutesback) * 60

startseconds = endingtime_seconds - mysecondsback

startdatetime = strftime (myformat, time.gmtime (startseconds))
enddatetime = strftime (myformat, time.gmtime (endingtime_seconds))

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

return (startdatetime, enddatetime)

def fix_times():
""" handles calling the rest of the routines to fix up times
arguments come in from the command line so we don't pass them in

nmmon

chanflagstring = str(sys.argv[l])
startdatetime = str(sys.argv[2])
enddatetime = str(sys.argv[3])

if relative times, replace the ending time with the current GMT time
set the starting time back by the specified number of minutes

if startdatetime == 'now':
(startdatetime, enddatetime) = \
convert_relative_times_to_real datetimes (enddatetime)
else:
we have real timedate stamps for starting and ending datetimes
process the starting datetime value...
correctly written datetime value?
also zero the seconds if present (SIE-Batch API doesn't use them)

validate_input_time_date_format (startdatetime)
startdatetime = zero_unused_seconds (startdatetime)

repeat for the ending datetime wvalue...

validate_input_time_date_format (enddatetime)

enddatetime = zero_unused_seconds (enddatetime)
return (startdatetime, enddatetime)

https://stackoverflow.com/questions/1265665/how—can—i—-check—-if-a-string-represents—-an-
int-without-using-try-except
#
def isInt_try(v):
""" convenience function to see if a string might be integer-ish """
pylint: disable=unused-variable,multiple-statements,bare-except
try: 1 = int (v)
except: return False
return True

def build_filename (chanflagstring, startdatetime, enddatetime):
"""construct the filename from the command line arguments and return it"""

stringl = startdatetime.replace(' ', '@Q")
string2 = enddatetime.replace(' ', 'Q")
nmsgchannels = ["204", "206", "207", "208", "221"]
if chanflagstring in nmsgchannels:
filetype = ".nmsg"
else:
filetype = ".jsonl"
outputfilename = "sie-ch" + chanflagstring + "—{" + stringl + \

"}={" + string2 + "}" + filetype

return outputfilename

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

52

53

def print_usage_info () :
""" deliver a succinct usage summary if needed """
print ("""’

Usage:

sie_get_py channel "now" minutesBack
Example: sie_get_py 212 now 15

OR

sie_get_py channel "startdatetime" "enddatetime"
Example: sie_get_py 212 "2020-01-07 00:13:00" "2020-01-07 00:28:00"

Convenience functions:

Check SIE-Batch API key: sie_get_py checkkey

Get a listing of channels: sie_get_py channels

Get datetime range and volume for a channel: sie_get_py 212
Notes:

Datetimes are UTC and must be quoted. (Current UTC datetime: $ date -u)
Zero pad any single digit months, days, hours, minutes or seconds.
Seconds must be entered as part of the UTC datetimes (but are ignored)
Ending datetime in the future? It will be clamped to current datetime.
Ill)
sys.exit (1)

def one_real_arg(endpoint, useproxy, first_arqg):
""" sometimes we only see one option on the command line; process it
defined_channels = {'24', '25', '27', '42', '80', '114', '115', \
'204', '206', '207', '208', '211', '212', '213', '214', '221'}

if first_arg == 'channels':
list channels for the user
list_channels (endpoint, useproxy)
sys.exit (0)

elif first_arg == 'checkkey':
check the user's key for validity
status = validateapikeyonline (endpoint, useproxy)
print ("API key status is "+status)
sys.exit (0)

elif (isInt_try(first_arg) and (first_arg in defined_channels)):
list details about the specified channel
(earliest, latest, datasize) = show_intervals (endpoint, \
useproxy, first_arg)
format_and_printout_chan_time_limits(first_arg, earliest, \
latest, datasize)
sys.exit (0)

elif (not(first_arg in defined_channels) and (isInt_try(first_arqg))):
the requested channel is not one we offer, so...
print ("Channel not offered via this script")
sys.exit (0)

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

else:
print_usage_info ()
sys.exit (0)

def three_real_args (endpoint, useproxy):

""" other times we may see three arguments on the command line... """

chanflagstring = str(sys.argv[l])
(startdatetime, enddatetime) = fix times ()
(startdatetime, enddatetime) = check_channel (endpoint, useproxy, \

chanflagstring, startdatetime, enddatetime)

outputfilename = build_filename (chanflagstring, startdatetime, enddatetime)

myapikey = getkeyfromlocalfile()

params = {"apikey": myapikey, "channel": int (chanflagstring), \
"start_time": startdatetime, "end_time": enddatetime}

params2 = json.dumps (params)

queryURL = "https://" + endpoint + "/siebatchd/vl/siebatch/chfetch"

make_query (queryURL, useproxy, params2, outputfilename)
sys.exit (0)

#
main
if len(sys.argv) == 1:

print_usage_info ()
sys.exit (0)

elif len(sys.argv) >= 2:

first_arg = sys.argv([l]
command_line_arg_count = len(sys.argv)-1
if command_line_arg_count == 1:

one_real_arg(endpoint, useproxy, first_arg)
sys.exit (0)

elif command_line_arg_count ==
three_real_args (endpoint, useproxy)
sys.exit (0)

elif (command_line_arg_count <= 0) or (command_line_arg_count >= 4) or \
(command_line_arg_count == 2):
print_usage_info ()
sys.exit (0)

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

55
$ cat .pylintrc
[MASTER]

A comma-separated list of package or module names from where C extensions may
be loaded. Extensions are loading into the active Python interpreter and may
run arbitrary code.

extension-pkg-whitelist=

Add files or directories to the blacklist. They should be base names, not
paths.
ignore=CVS

Add files or directories matching the regex patterns to the blacklist. The
regex matches against base names, not paths.
ignore-patterns=

Python code to execute, usually for sys.path manipulation such as
pygtk.require() .
#init-hook=

Use multiple processes to speed up Pylint. Specifying 0 will auto-detect the
number of processors available to use.
jobs=0

Control the amount of potential inferred values when inferring a single

object. This can help the performance when dealing with large functions or
complex, nested conditions.

limit-inference-results=100

List of plugins (as comma separated values of python module names) to load,
usually to register additional checkers.
load-plugins=

Pickle collected data for later comparisons.
persistent=yes

Specify a configuration file.
#rcfile=

When enabled, pylint would attempt to guess common misconfiguration and emit
user—friendly hints instead of false-positive error messages.
suggestion-mode=yes

Allow loading of arbitrary C extensions. Extensions are imported into the
active Python interpreter and may run arbitrary code.
unsafe-load-any-extension=no

[MESSAGES CONTROL]

Only show warnings with the listed confidence levels. Leave empty to show
all. Valid levels: HIGH, INFERENCE, INFERENCE_FAILURE, UNDEFINED.

confidence=

Disable the message, report, category or checker with the given id(s). You

can either give multiple identifiers separated by comma (,) or put this

option multiple times (only on the command line, not in the configuration

file where it should appear only once). You can also use "--disable=all" to

disable everything first and then reenable specific checks. For example, if

you want to run only the similarities checker, you can use "--disable=all

——enable=similarities". If you want to run only the classes checker, but have
no Warning level messages displayed, use "--disable=all --enable=classes

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

——disable=uW".

disable=print-statement,
parameter—-unpacking,
unpacking-in-except,
old-raise-syntax,
backtick,
long-suffix,
old-ne-operator,
old-octal-literal,
import-star-module-level,
non-ascii-bytes-literal,
raw—-checker-failed,
bad-inline-option,
locally-disabled,
file-ignored,
suppressed-message,
useless—-suppression,
deprecated-pragma,
use-symbolic-message—instead,
apply-builtin,
basestring-builtin,
buffer-builtin,
cmp-builtin,
coerce-builtin,
execfile-builtin,
file-builtin,
long-builtin,
raw_input-builtin,
reduce-builtin,
standarderror-builtin,
unicode-builtin,
xrange-builtin,
coerce-method,
delslice-method,
getslice-method,
setslice-method,
no—-absolute-import,
old-division,
dict-iter—-method,
dict-view-method,
next-method-called,
metaclass—assignment,
indexing-exception,
raising-string,
reload-builtin,
oct-method,
hex-method,
nonzero-method,
cmp-method,
input-builtin,
round-builtin,
intern-builtin,
unichr-builtin,
map-builtin-not-iterating,
zip-builtin-not-iterating,
range—builtin-not—-iterating,
filter-builtin-not-iterating,
using-cmp-argument,
eg-without-hash,
div-method,
idiv-method,

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

rdiv-method,
exception-message—attribute,
invalid-str—-codec,
sys—max-int,
bad-python3-import,
deprecated-string-function,
deprecated-str—-translate—-call,
deprecated-itertools—-function,
deprecated-types—-field,
next-method-defined,
dict-items—-not—-iterating,
dict-keys—-not—-iterating,
dict-values—-not-iterating,
deprecated-operator-function,
deprecated-urllib-function,
xreadlines—attribute,
deprecated-sys—-function,
exception-escape,
comprehension-escape,
c-extension—-no-member,
redefined-outer—name

Enable the message, report, category or checker with the given id(s). You can
either give multiple identifier separated by comma (,) or put this option
multiple time (only on the command line, not in the configuration file where
it should appear only once). See also the "--disable" option for examples.
enable=c-extension—-no-member

E .

[REPORTS]

Python expression which should return a score less than or equal to 10. You

have access to the variables 'error', 'warning', 'refactor', and 'convention'
which contain the number of messages in each category, as well as 'statement'
which is the total number of statements analyzed. This score is used by the
global evaluation report (RP0004).

evaluation=10.0 - ((float (5 * error + warning + refactor + convention) / statement)

H o W S e

Template used to display messages. This is a python new-style format string
used to format the message information. See doc for all details.
#msg-template=

Set the output format. Available formats are text, parseable, colorized, json
and msvs (visual studio). You can also give a reporter class, e.g.

mypackage.mymodule.MyReporterClass.

output-format=text

Tells whether to display a full report or only the messages.
reports=no

Activate the evaluation score.
score=yes

[REFACTORING]

Maximum number of nested blocks for function / method body
max—-nested-blocks=5

Complete name of functions that never returns. When checking for
inconsistent-return-statements if a never returning function is called then
it will be considered as an explicit return statement and no message will be
printed.

ERE

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

57

* 10)

never-returning-functions=sys.exit
[LOGGING]

Format style used to check logging format string. “old’ means using %
formatting, "new 1is for " {} formatting,and " fstr' is for f-strings.
logging-format—-style=o0ld

Logging modules to check that the string format arguments are in logging
function parameter format.
logging-modules=logging

[SPELLING]

Limits count of emitted suggestions for spelling mistakes.
max—-spelling-suggestions=4

Spelling dictionary name. Available dictionaries: none. To make it work,
install the python-enchant package.
spelling-dict=

List of comma separated words that should not be checked.
spelling-ignore-words=

A path to a file that contains the private dictionary; one word per line.
spelling-private—-dict-file=

Tells whether to store unknown words to the private dictionary (see the
——spelling-private-dict-file option) instead of raising a message.
spelling-store-unknown-words=no

[MISCELLANEOQOUS]

List of note tags to take in consideration, separated by a comma.
notes=FIXME,

XXX,

TODO

[TYPECHECK]

List of decorators that produce context managers, such as

contextlib.contextmanager. Add to this list to register other decorators that
produce valid context managers.
contextmanager-decorators=contextlib.contextmanager

List of members which are set dynamically and missed by pylint inference
system, and so shouldn't trigger E1101 when accessed. Python regular

expressions are accepted.

generated-members=

Tells whether missing members accessed in mixin class should be ignored. A
mixin class is detected if its name ends with "mixin" (case insensitive).
ignore—-mixin-members=yes

Tells whether to warn about missing members when the owner of the attribute

is inferred to be None.
ignore—-none=yes

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

This flag controls whether pylint should warn about no-member and similar

checks whenever an opaque object is returned when inferring. The inference

can return multiple potential results while evaluating a Python object, but
some branches might not be evaluated, which results in partial inference. In
that case, it might be useful to still emit no-member and other checks for

the rest of the inferred objects.

ignore-on-opaque—-inference=yes

List of class names for which member attributes should not be checked (useful
for classes with dynamically set attributes). This supports the use of

qualified names.

ignored-classes=optparse.Values,thread._local,_thread._local

List of module names for which member attributes should not be checked

(useful for modules/projects where namespaces are manipulated during runtime
and thus existing member attributes cannot be deduced by static analysis). It
supports qualified module names, as well as Unix pattern matching.
ignored-modules=

Show a hint with possible names when a member name was not found. The aspect
of finding the hint is based on edit distance.
missing-member—hint=yes

The minimum edit distance a name should have in order to be considered a
similar match for a missing member name.
missing-member—-hint-distance=1

The total number of similar names that should be taken in consideration when
showing a hint for a missing member.
missing-member—-max—choices=1

List of decorators that change the signature of a decorated function.
signature-mutators=

[VARIABLES]

List of additional names supposed to be defined in builtins. Remember that
you should avoid defining new builtins when possible.
additional-builtins=

Tells whether unused global variables should be treated as a violation.
allow—global-unused-variables=yes

List of strings which can identify a callback function by name. A callback
name must start or end with one of those strings.
callbacks=cb_,

_cb

A regular expression matching the name of dummy variables (i.e. expected to
not be used).
dummy-variables-rgx=_+$| (_[a-zA-Z0-9_]*[a-zA-Z20-9]+7?$) |dummy | “ignored_ | *unused_

Argument names that match this expression will be ignored. Default to name
with leading underscore.
ignored-argument-names=_.*|“ignored_|“unused_

Tells whether we should check for unused import in _ _init__ files.
init-import=no

List of qualified module names which can have objects that can redefine

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

60
builtins.
redefining-builtins-modules=six.moves,past.builtins, future.builtins,builtins, io

[FORMAT]

Expected format of line ending, e.g. empty (any line ending), LF or CRLF.
expected-line-ending-format=

Regexp for a line that is allowed to be longer than the limit.
ignore-long-lines="\s* (#)?<?https?://\S+>?$

Number of spaces of indent required inside a hanging or continued line.
indent-after-paren=4

String used as indentation unit. This is usually " " (4 spaces) or "\t" (1
tab).
indent-string=" !

Maximum number of characters on a single line.
max—line-length=100

Maximum number of lines in a module.
max-module-1ines=1000

List of optional constructs for which whitespace checking is disabled. “dict-
separator’ is used to allow tabulation in dicts, etc.: {1 : 1,\n222: 2}.
“trailing-comma allows a space between comma and closing bracket: (a,).
“empty-line’ allows space-only lines.
no-space-check=trailing-comma,
dict-separator

Allow the body of a class to be on the same line as the declaration if body
contains single statement.
single-line-class—-stmt=no

Allow the body of an if to be on the same line as the test if there is no
else.
single-line-if-stmt=no

[SIMILARITIES]

Ignore comments when computing similarities.
ignore-comments=yes

Ignore docstrings when computing similarities.
ignore-docstrings=yes

Ignore imports when computing similarities.
ignore—imports=no

Minimum lines number of a similarity.
min-similarity-lines=4

[BASIC]

Naming style matching correct argument names.
argument—-naming-style=any

Regular expression matching correct argument names. Overrides argument-
naming-style.

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

#argument-rgx=

Naming style matching correct attribute names.
attr-naming-style=any

Regular expression matching correct attribute names. Overrides attr—-naming-
style.
fattr-rgx=

Bad variable names which should always be refused, separated by a comma.
bad—names=foo,

bar,

baz,

toto,

tutu,

tata

Naming style matching correct class attribute names.
class—attribute—-naming-style=any

Regular expression matching correct class attribute names. Overrides class-
attribute-naming-style.
#class—attribute-rgx=

Naming style matching correct class names.
class—-naming-style=PascalCase

Regular expression matching correct class names. Overrides class—-naming-
style.
#class-rgx=

Naming style matching correct constant names.
const—-naming-style=any

Regular expression matching correct constant names. Overrides const-naming-
style.
#const-rgx=

Minimum line length for functions/classes that require docstrings, shorter
ones are exempt.
docstring-min-length=-1

Naming style matching correct function names.
function—-naming-style=any

Regular expression matching correct function names. Overrides function-
naming-style.
#function-rgx=

Good variable names which should always be accepted, separated by a comma.
good-names=1i,

Jr

k,

ex,

Run,

Include a hint for the correct naming format with invalid-name.
include-naming-hint=no

Naming style matching correct inline iteration names.

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

61

62

inlinevar—naming-style=any

Regular expression matching correct inline iteration names. Overrides
inlinevar-naming-style.
#inlinevar-rgx=

Naming style matching correct method names.
method-naming-style=any

Regular expression matching correct method names. Overrides method-naming-
style.
#method-rgx=

Naming style matching correct module names.
module-naming-style=any

Regular expression matching correct module names. Overrides module-naming-
style.
#module-rgx=

Colon-delimited sets of names that determine each other's naming style when
the name regexes allow several styles.
name—group=

Regular expression which should only match function or class names that do
not require a docstring.
no-docstring-rgx="_

List of decorators that produce properties, such as abc.abstractproperty. Add
to this list to register other decorators that produce valid properties.

These decorators are taken in consideration only for invalid-name.
property-classes=abc.abstractproperty

Naming style matching correct variable names.
variable—-naming-style=any

Regular expression matching correct variable names. Overrides variable-—
naming-style.
#variable-rgx=

[STRING]

This flag controls whether the implicit-str-concat-in-sequence should

generate a warning on implicit string concatenation in sequences defined over
several lines.

check-str-concat-over-line-jumps=no

[IMPORTS]
List of modules that can be imported at any level, not just the top level
one.

allow—any-import-level=

Allow wildcard imports from modules that define __all
allow-wildcard-with—-all=no

Analyse import fallback blocks. This can be used to support both Python 2 and
3 compatible code, which means that the block might have code that exists

only in one or another interpreter, leading to false positives when analysed.
analyse—-fallback-blocks=no

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

63
Deprecated modules which should not be used, separated by a comma.
deprecated-modules=optparse, tkinter.tix

Create a graph of external dependencies in the given file (report RP0402 must
not be disabled).
ext—-import—-graph=

Create a graph of every (i.e. internal and external) dependencies in the
given file (report RP0402 must not be disabled).
import—graph=

Create a graph of internal dependencies in the given file (report RP0402 must
not be disabled).
int-import—-graph=

Force import order to recognize a module as part of the standard
compatibility libraries.
known-standard-library=

Force import order to recognize a module as part of a third party library.
known-third-party=enchant

Couples of modules and preferred modules, separated by a comma.
preferred-modules=

[CLASSES]

List of method names used to declare (i.e. assign) instance attributes.
defining-attr-methods=__init_ ,
__new__,

setUp,
__post_init_

List of member names, which should be excluded from the protected access
warning.
exclude-protected=_asdict,

_fields,

_replace,

_source,

_make

List of valid names for the first argument in a class method.
valid-classmethod-first—-arg=cls

List of valid names for the first argument in a metaclass class method.
valid-metaclass-classmethod-first—-arg=cls

[DESIGN]

Maximum number of arguments for function / method.
max—args=5

Maximum number of attributes for a class (see R0902).
max—attributes=7

Maximum number of boolean expressions in an if statement (see R0916).
max—-bool—-expr=5

Maximum number of branch for function / method body.
max—-branches=15

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

Maximum number of locals for function / method body.
max—locals=15

Maximum number of parents for a class (see R0901).
max-parents=7

Maximum number of public methods for a class (see R0904).
max-public-methods=20

Maximum number of return / yield for function / method body.
max-returns=6

Maximum number of statements in function / method body.
max—statements=50

Minimum number of public methods for a class (see R0903).
min-public-methods=2

[EXCEPTIONS]
Exceptions that will emit a warning when being caught. Defaults to
"BaseException, Exception".

overgeneral-exceptions=BaseException,
Exception

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

64

Appendix VL. sie_get_pl client source code

This Source Code Form is subject to the terms of the Mozilla Public License, v. 2.0. If a copy of the MPL was not
distributed with this file, you can obtain one at https://mozilla.org/MPL/2.0/

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

65

66
$ cat sie_get_pl.pl
#!/usr/local/bin/perl

Check with: perlcritic —--profile ./.perlcritic sie_get_pl.pl

use strict;
use warnings;

use Carp gw(croak);

use Data::Printer;

use Data::Structure::Util gw(unbless);
use DateTime;

use DateTime: :Format::Strptime;
use File::HomeDir;

use JSON;

use LWP;

use LWP::UserAgent;

use TimeDate;

use Time: :ParseDate;

use POSIX::strftime: :GNU;

use POSIX qgqw(strftime);

my sNL — ll\nll;
my S$endpoint = 'batch.sie-remote.net';
my Suseproxy = '0'; # '0' is false

FUNCTIONS
#
functions appear in order by dependency (to-be called precedes calling)

sub getkeyfromlocalfile
{
build the filepath pointing at the SIE-Batch API key
my $filepath = File::HomeDir->my_home . '/.sie—-get-key.txt';

make sure the SIE-Batch API key file exists
if (!-e $filepath)
{
croak ("ERROR:\n\n No SIE-Batch API keyfile at \n", $filepath);

open that key file and read the SIE-Batch API key
my $fh;
open ($fh, '<:encoding (UTF-8)', $filepath) or
croak ("Could not open SIE-Batch API keyfile $fh\n");
my Smyapikey = <S$fh>;
chomp S$myapikey;
close ($fh) or croak ("Could not close SIE-Batch API keyfile $fh\n");

return (Smyapikey);

sub make_dqguery
{
my Surl = S$_[0];
my Suseproxy = $_[1]; # we get S$Suseproxy as a global
my Sparams = S$_[2];
my Soutputfilename = $_[3];

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

my S$content;

my Sua;

Sua = LWP::UserAgent->new();
Sua->requests_redirectable (['POST', 1) ;
Sua->default_header ('Content-Type' => 'application/Jjson');

Sua->default_header ('Accept' => 'application/json');
Sua—->timeout (86_400);
Sua->agent ('sie_get_pl/1.0");

if (Suseproxy) {

Sua->proxy ([gw (http https)] => 'socks://127.0.0.1:1080");
Sua->protocols_allowed(['https', "http',1);
} else {

Sua->protocols_allowed(['https',]1);
Sua->ssl_opts(verify_hostname => 'true');

try validating the API key up to 3 times
my Qresponse;

my Stries = 3;
my Src;

my Smsg;

while ($Stries >= 1) {

my Sresponse = Sua->post(Surl, content => S$params);
unbless (Sresponse) ;
Src = Sresponse->{'_rc'};
Smsg = Sresponse->{'_msqg'};
Scontent = S$response->{'_content'};
if (Src == 200) {
last;
} else {

print "Problem in make_query: S$rc\n";
print "Message: Smsg\n";

}

if not, try again at least two more times

Stries = S$tries - 1;
if (Stries == 0) {
croak ("HTTP error (retried three times)');

}

return (Scontent) ;

sub validateapikeyonline

{
query the live SIE-Batch API server to confirm the key status

Sendpoint = $_[0];
Suseproxy = $_[1];
my SqueryURL = 'https://' . $endpoint . '/siebatchd/vl/validate';

my $myapikeyval = getkeyfromlocalfile;
Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

67

my $queryParams = { 'apikey' => S$Smyapikeyval };

my $json = encode_json S$queryParams;

my Sresponse = make_query ($SqueryURL, S$Suseproxy, S$json, '—-999');
unbless (Sresponse) ;

my S$decoded_response = decode_json S$response;

my S$status = Sdecoded_response->{'_status'};

return ($status);

left pad a value with spaces
https://www.perlmonks.org/?node_id=7462
sub pad
{
my ($string, S$length)=@_;
my S$padlength=S$length-length($string);
no critic
return " "xS$padlength.$string;
use critic

sub format_and_printout_the_chan_list

{

my $chan_list = $_[0];

my $json_decoded_stuff;
my %new_hash;

my $json_decoded_stuff = decode_json S$chan_list;
foreach my $key (keys %${$json_decoded_stuff}) {

my Sactual_val=%$json_decoded_stuff{s$key}->{'description'};

left pad the channel number to a width of 3
my $key2 = Skey;
Skey2 =~ s/ch//s;
my Skeystring = pad($Skey2,3);
$new_hash{$keystring} = $actual_val;

}

foreach my Skeystring (sort keys %new_hash) {
printf ("%$s %$s\n", S$keystring, S$new_hash{S$keystring});

sub list_channels

{

my S$Sendpoint =
my Suseproxy

my Smyapikeyval = getkeyfromlocalfile;

my SqueryURL = 'https://' . Sendpoint . '/siebatchd/vl/validate';
my SqueryParams = to_json{ 'apikey' => S$Smyapikeyval };
my Sresponse = make_query ($queryURL, S$useproxy, SqueryParams, '-999');

unbless (Sresponse) ;
my S$decoded_response = decode_json S$response;
my Sextract_bit = S$decoded_response->{'profile'}->{'siebatch'};

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

my $json_query_object = to_Jjson($extract_bit);
format_and_printout_the_chan_list ($json_query_object);
return;

https://www.oreilly.com/library/view/perl-cookbook/1565922433/ch02s18.html
#
sub add_commas

{

my S$num_string = $_[0];

my $text = reverse $num_string;

Stext =~ s/ (\d\d\d) (?=\d) (2!\d*\.)/$1, /gsmx;

return scalar reverse S$Stext;

sub format_and_printout_chan_time_limits
{
my S$chan = $_[0];

my Searliest_time_string = $_[1];

my S$latest_time_string = $_[2];

my $volume = $_[31];

my $chan_with _prefix = 'ch' . $chan; # needed to correspond to the API :—(

take the channel status parameters and print them out in a little report

$chan = sprintf '%4s', S$chan;
if (int (Svolume) >= 4) {
Svolume = add_commas (S$Svolume) ;

}

could add a header, but it's pretty self-obvious, right?

printf ('chan earliest datetime latest datetime octets\n'");

printf ("%$s \"%s\" \"%s\" %s\n", S$chan, S$Searliest_time_string,
Slatest_time_string, $volume);

return;

sub show_intervals
{
my S$endpoint = $_[0];
my Suseproxy = $_[11;
my S$chan_to_check = $_[2];

with square brackets

my Snewchan_to_check = '[' . $chan_to_check . ']';
no brackets, but with ch literal prefix
my S$chan_with_prefix = 'ch' . $chan_to_check;

my Smyapikeyval = getkeyfromlocalfile;
my Sparams = encode_json{ 'apikey' => Smyapikeyval,
'channels' => $newchan_to_check };

fix up a bit of awkwardness

{"channels":"[212]", "apikey":"blah"} needs to become

{"channels":[212],"apikey":"blah"} (e.g., no quotes around [chan])
Sparams =~ s/"\[/[/s;

$params =~ s/1"/1/s;

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

my $Surl = 'https://' . $endpoint . '/siebatchd/vl/siebatch/chdetails"';
my Sresponse = make_query (Surl, S$Suseproxy, Sparams, '—-999');

my Sdecoded_results=from_Jjson (Sresponse);

unbless ($decoded_results);

my $earliest_time_string =
Sdecoded_results->{'channels'}{$Schan_with_prefix}{'earliest'};

my S$latest_time_string =
Sdecoded_results—>{'channels'}{$Schan_with_prefix}{'latest'};

my $size_string =
$Sdecoded_results—>{'channels'}{Schan_with_prefix}{'size'};

return (Searliest_time_string, $latest_time_string, $size_string);

sub fixup_ending_datetime_in_the_future

{

Stop datetime out of range. Replacing with current GMT time.

my S$Sepochseconds = parsedate (gmtime());
my Senddatetime = strftime ('$Y-%m-%d %$H:%M:%S', gmtime());

Senddatetime =~ s/..$/00/s;
return ($Senddatetime) ;

sub check_channel

{

make sure that the channel is available and the dates are in-range

my $endpoint = $_[0];

my Suseproxy = $_[11];

my Schanflagstring = $_[2];
my $startdatetime = $_[3];
my S$enddatetime = $_[4];

get the available datetime range for this channel
(my Searliest_time_string, my $latest_time_string, my S$channel_octers) =
show_intervals ($endpoint, $useproxy, S$chanflagstring);

convert the requested and available start datetimes into Un*x seconds
my Srequested_start_seconds = parsedate ($Sstartdatetime);
my Searliest_date_seconds = parsedate (Searliest_time_string);

convert the requested and available end datetimes into Un*x seconds
my Srequested_stop_seconds = parsedate ($Senddatetime);
my S$Slatest_date_seconds = parsedate ($Slatest_time_string);

start datetime must be earlier than stop date time
if ((Srequested_stop_seconds - S$requested_start_seconds) < 0) {
croak ('Start datetime must be earlier than stop datetime');

}

start datetime may not be earlier than earliest data available
if ((Srequested_start_seconds - $earliest_date_seconds) < 0) {
croak ('Start datetime out of range. Must be no earlier than ' . \
Searliest_time_string);

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

end datetime may not be in the future
if ((Srequested_stop_seconds - $latest_date_seconds) > 0) {
Senddatetime = fixup_ending_datetime_in_the_future();

}

handle return of the (potentially updated) datetimes here
my @timearray;

Stimearray[0] = S$startdatetime;

Stimearray[1] Senddatetime;

return (Q@timearray);

sub validate_input_time_date_format

{
parameter is datetime to format check

if invalid, abort run

if valid, return the validated (but unchanged) datetime (could skip
doing this for now, but at some point we might decide to fix up bad
string formatting as a convenience to the user, so...)

my S$mydatetime = $_[0];
check the format with a regex

if (($mydatetime =~ /\A\d{4}-\d{2}-\d{2}\ \d{2}:\d{2}:\d{2}\Z/smx)) {
good starting time format

} else {
print ("bad starting time format —-- must be \"YYYY-MM-DD HH:MM:SS\"\n");
exit (1) ;

return (Smydatetime);

sub zero_unused_seconds
{

since SIE-Batch API does not care about seconds, we set them to zero

my S$mydatetime = $_[0];
Smydatetime =~ s/..$/00/s;
return (Smydatetime);

sub convert_relative_times_to_real_datetimes
{
my Sminutesback = SARGVI[2];
my S$format = '$Y-%m-%d $H:%M:%S';

in relative format, the initial "ending time" is actually the minutes
worth of data we want to retrieve

the "real" ending datetime will be created from the current GMT time
we will be doing math on the epoch seconds

e

my Sendingtime = gmtime () ;
my Sepochseconds = parsedate ($endingtime);

now compute the formatted ending date time in standard YYYY-MM-DD HH:MM:SS
my Senddatetime = strftime $format, localtime S$epochseconds;
find just the seconds from that string

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

72

my Sextraseconds = strftime '%$S', localtime S$epochseconds;
subtract the seconds from the full datetime to end up with 00 seconds
my Sendingtime_seconds = int (Sepochseconds) - int (Sextraseconds);

let's now work on the starting time
we compute the "real" starting datetime by offsetting backwards
our to-be-modified datetime is in epoch seconds, so convert min to seconds

my Smysecondsback = int ($Sminutesback) * 60;

my S$Sstartseconds = $endingtime_seconds - int (Smysecondsback) ;
my S$startdatetime = strftime $format, localtime $startseconds;
Senddatetime = strftime $format, localtime S$endingtime_seconds;

my @timearray;
Stimearray[0] = S$startdatetime;
Stimearray[1l] Senddatetime;

return (@timearray);

sub fix_times

{

arguments come in from the command line so we don't pass them in

standardize the starting and ending times from the command line
(my $chanflagstring, my $startdatetime, my Senddatetime) = @ARGV;

if relative times, replace the ending time with the current GMT time
set the starting time back by the specified number of minutes
my @timearray;

if ($Sstartdatetime eqg 'now') {
@timearray = convert_relative_times_to_real_datetimes ($enddatetime) ;
} else {

we have real timedate stamps for starting and ending datetimes

process the starting datetime value...

correctly written datetime value?

also zero the seconds if present (SIE-Batch API doesn't use them)
validate_input_time_date_format ($startdatetime);

Sstartdatetime = zero_unused_seconds ($startdatetime);

repeat for the ending datetime value...
validate_input_time_date_format (Senddatetime) ;

Senddatetime = zero_unused_seconds ($Senddatetime) ;
Stimearray[0] = S$startdatetime;
Stimearray[l] = $enddatetime;

}

return (Q@timearray);

sub check_if_chan_is_an_nmsg_chan
{
my S$Schanflagstring = $_[0];

my %keys = (204 => 1,
206 => 1,
207 => 1,
208 => 1,

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

221 => 1,);

my S$filetype = undef;
my Skeys;
if (Skeys{Schanflagstring}) {

Sfiletype = '.nmsg';
} else {
Sfiletype = '.Jsonl';

}

return (S$filetype);

sub build_filename
{
construct the filename and return it
my S$stringl = S_[1];

my $string2 = S_[2];

my S$Schanflagstring = S$SARGVI[O0];

S$stringl =~ s/ /@/s;

Sstring2 =~ s/ /@/s;

my $filetype = check_if_ chan_is_an_nmsg_chan ($Schanflagstring);

my $outputfilename = 'sie-ch' . $chanflagstring . '—-{' . $stringl
"}1-{'" . $string2 . '}' . S$filetype;

return (Soutputfilename) ;

sub print_usage_info

{
print <<'FOO';
Usage:

sie_get_pl channel "now" minutesBack
Example: sie_get_pl 212 now 15

OR

sie_get_pl channel "startdatetime" "enddatetime"
Example: sie_get_pl 212 "2020-01-07 00:13:00" "2020-01-07 00:28:00"

Convenience functions:

Check SIE-Batch API key: sie_get_pl checkkey

Get a listing of channels: sie_get_pl channels

Get datetime range and volume for a channel: sie_get_pl 212
Notes:

Datetimes are UTC and must be quoted. (Current UTC datetime: $ date -u)
Zero pad any single digit months, days, hours, minutes or seconds.
Seconds must be entered as part of the UTC datetimes (but are ignored)
Ending datetime in the future? It will be clamped to current datetime.

minutesBack must be >= 1 and a whole number
FOO
exit (0);

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

73

sub one_real_arg
{
because users can ask for channel info by specifying a channel
number, we need to know the list of defined channel numbers

my $first_arg = $_[2];
my S$Schanflagstring = S$SARGVI[O0];

my %$defined_channels = (24 => 'true',
25 => 'true',
27 => 'true',
42 => 'true',
80 => 'true',
114 => 'true',
115 => 'true',
204 => 'true',
206 => 'true',
207 => 'true',
208 => 'true',
211 => 'true',
212 => 'true',
213 => 'true',
214 => 'true',
221 => 'true',
)i

my S$first_arg_looks_numeric = ($first_arg =~ /~\d+S$/s);
my S$status;

if ($first_arg eqg 'channels') {
list channels for the user
list_channels ($endpoint, $useproxy);
exit (0);

} elsif ($first_arg eq 'checkkey') {
check the user's key for validity

$status = validateapikeyonline ($Sendpoint, Suseproxy);
print ('API key status is ' . $status . "\n");
exit (0);

} elsif (S$defined_channels{$first_arg}) {
list details about the specified channel
(my Searliest, my S$latest, my S$Sdatasize) =
show_intervals ($endpoint, $useproxy, S$chanflagstring);
format_and_printout_chan_time_limits ($chanflagstring, Searliest,
Slatest, S$datasize);

exit (0)
} elsif ((not(Sdefined_channels{S$chanflagstring})) &&
($first_arg_looks_numeric)) {

the requested channel is not one we offer, so...
print ("Channel not offered via this script\n");
exit (0);
} else {
print_usage_info();
exit (0);

sub three_real_args

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

{

my $first_arg = SARGV[O0];

my Sstartdatetime = SARGVI[1];
my Senddatetime = SARGVI[2];

my $myapikey = getkeyfromlocalfile;
(Sstartdatetime, S$enddatetime) = fix_times|();

($startdatetime, S$enddatetime) = check_channel ($endpoint, S$Suseproxy,
Sfirst_arg, S$startdatetime, S$enddatetime);

my Soutputfilename = build_filename ($first_arg, S$startdatetime,
Senddatetime) ;

my $params = ('apikey' => getkeyfromlocalfile,
'channel' => int ($first_argqg),
'start_time' => S$startdatetime,
'end_time' => S$enddatetime,);

the backslash in the following is critical; w/o it, $params2 becomes 4
my S$params?2 = encode_json \%params;

my SqueryURL = 'https://' . $endpoint . '/siebatchd/vl/siebatch/chfetch';

my Sresponse = make_query ($SqueryURL, S$useproxy, S$params2,
Soutputfilename) ;

write the SIE-Batch data out to our file
open my $fh, '>:raw', Soutputfilename or croak();
print $fh S$response;

close ($fh) or croak ("Could not successfully close output file $fh\n");
exit (0);

}

#

main

my $first_arg;
my S$status;

if (QARGV) {
$first_arg = SARGVI[O0];
}

my S$Scommand_line_arg_count = S$#ARGV + 1;

if (Scommand_line_arg_count == 1)
{
one_real_arg($Sendpoint, Suseproxy, $first_arg);
exit (0);
}
elsif (Scommand_line_arg_count == 3)
{
three_real_args ($endpoint, S$useproxy, $first_arg);
exit (0);
}
elsif ((Scommand_line_arg_count <= 0)
($Scommand_line_arg_count == 2)
(Scommand_line_arg_count >= 4))

{
Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

75

print_usage_info();
exit (0);

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

76

77
$ cat .perlcritic
severity = brutal

[TooMuchCode: :ProhibitUnusedImport]
[Variables::ProhibitUnusedVariables]

[Subroutines: :RequireArgUnpacking]
allow_subscripts = 2

[Variables::ProhibitReusedNames]
allow = Suseproxy Sendpoint

[RegularExpressions: :RequireExtendedFormatting]
minimum_regex_length_to_complain_about = 10

[ControlStructures::ProhibitCascadingIfElse]
max_elsif = 6

[InputOutput: :RequireBriefOpen]
lines = 5

[InputOutput: :RequireCheckedSyscalls]
functions = :builtins
exclude_functions = print

—Codelayout: :ProhibitParensWithBuiltins]
—CodelLayout: :RequireTidyCode]

—InputOutput: :RequireBracedFileHandleWithPrint]
—-Miscellanea: :ProhibitUnrestrictedNoCritic]
-Modules: :RequireVersionVar]
—NamingConventions::Capitalization]
—References::ProhibitDoubleSigils]
RegularExpressions: :ProhibitEscapedMetacharacters]
RegularExpressions: :RequireExtendedFormatting]
RegularExpressions: :RequirelLineBoundaryMatching]
Subroutines: :ProhibitAmpersandSigils]

TooMuchCode: :ProhibitDuplicatelLiteral]
—ValuesAndExpressions: :ProhibitCommaSeparatedStatements]
—ValuesAndExpressions: :ProhibitMagicNumbers]
—ValuesAndExpressions: :ProhibitNoisyQuotes]

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

Appendix VII. sie_get_c client source code

This Source Code Form is subject to the terms of the Mozilla Public License, v. 2.0. If a copy of the MPL was not
distributed with this file, you can obtain one at https://mozilla.org/MPL/2.0/

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

78

$ cat Makefile
EXEC = sie_get_c
PREFIX = /usr/local

CC = clang

CFLAGS = -Wall -Werror -std=cll -03
CPPFLAGS = -I /usr/local/include
LDFLAGS = -L /usr/local/lib -Wall
LDLIBS = —-lcurl

.SUFFIXES:

.SUFFIXES: .c .o

objects = \
build_filename.o \
check_channel.o \
check_intervals.o \
convert_relative_times_to_real datetimes.o \
getkeyfromlocalfile.o \
fix_times.o \
isNumeric.o \
list_channels.o \
make_query.o \
one_real_arg.o \
parson.o \
printout_intervals.o \
print_usage_info.o \
replString.o \
search_a_list.o \
sie_get_c.o \
string_fmt_time_to_seconds.o \
subString.o \
three_real_args.o \
validateapikeyonline.o \
validate_input_time_date_format.o

all: $(objects)
$(CC) —-o S (EXEC) $(objects) S$(LDFLAGS) $(LDLIBS)

sie_get.o
getAPIkey.o

.PHONY: install
install:
mkdir -p $(PREFIX) /bin
cp $(EXEC) $(PREFIX)/bin/.
chmod a+rx $(PREFIX) /bin/$ (EXEC)
mkdir -p $ (MANPREFIX)/manl
cp $(EXEC).1 S$(MANPREFIX)/manl/.

.PHONY: clean

clean:
@rm —-f $(EXEC) $(objects)

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

79

$ cat build filename.h
#define SMALL 20
#define LARGE 200

/* prototypes */

int search_a_list (const char *, const char **const);
void build_filename (void) ;
char *replString(const char *, const char *, const char *);

/* global variables */

extern char firstargl[];
extern char secargl];
extern char thirdargl];

/* created here, no extern */
char outputfilename[LARGE];

$ cat build filename.c
#include <stdio.h>

#include <string.h>
#include "build_filename.h"

void build_filename (void)

{
/* need these for the file name we're building */
char stringl[SMALL];
char string2[SMALL];

/* these are nmsgchannel format channels */
/*@null@*/
const char *nmsgchannels[] = { "204", "206", "207", "208",
"221", NULL };
/* NOTE: last channel in the above list MUST be NULL as shown! */

/* replace spaces with @'s in the filenames we make */

snprintf (stringl, sizeof stringl, "%s", replString(secarg, " ", "@"));
snprintf (string2, sizeof string2, "%s", replString(thirdarg, " ",

/* assemble the filename */

strlcpy (outputfilename, "sie-ch", sizeof (outputfilename));
strlcat (outputfilename, firstarg, sizeof (outputfilename));
strlcat (outputfilename, "—-{", sizeof (outputfilename));
strlcat (outputfilename, stringl, sizeof (outputfilename));
strlcat (outputfilename, "}-{", sizeof (outputfilename));
strlcat (outputfilename, string2, sizeof (outputfilename));
strlcat (outputfilename, "}", sizeof (outputfilename));

o~~~ o~~~

if (search_a_list(firstarg, nmsgchannels) == -1)

{

strlcat (outputfilename, ".Jjsonl", sizeof (outputfilename));

}

else

{

strlcat (outputfilename, ".nmsg", sizeof (outputfilename));

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

$ cat check_channel.h
#define SMALL 20
#define LARGE 255

/* prototypes */

void check_channel (void) ;

void check_intervals (void);

long string_fmt_time_to_seconds (const char *);

/* global variables */
extern char firstargll];
extern char secargl];

extern char thirdargl[];

extern char earliestdate_avail [SMALL];
extern char latestdate_avail [SMALL];
extern char volume[SMALL];

$ cat check_channel.c
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "check_channel.h"

void check_channel (void)

{
long requested_start_seconds;
long requested_stop_seconds;

long earliest_date_seconds;
long latest_date_seconds;

/* make sure that the channel is available and the dates are in-range */

/* check the available datetime range for this channel */
(void) check_intervals();

/* convert the requested and available datetimes into Unix seconds */

/* (easier to compare dates as Unix epoch seconds */

requested_start_seconds = string_fmt_time_to_seconds (secarq);

earliest_date_seconds = string_fmt_time_to_seconds (
earliestdate_avail);

requested_stop_seconds = string_fmt_time_to_seconds (thirdarg);

latest_date_seconds = string_fmt_time_to_seconds (
latestdate_avail);

/* REQUIRD: requested ending time can't be in the future */
if (requested_stop_seconds > latest_date_seconds)

{
printf ("Stop time can't be in the future!\n");
exit (EXIT_FAILURE);

/* REQUIRED: start datetime must be earlier than stop datetime */
if ((requested_stop_seconds - requested_start_seconds) < 0)

printf ("Start datetime must be earlier than stop datetime\n");
exit (EXIT_FAILURE);

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

}

}

/* REQUIRED: start datetime must be after the earliest data available */
if ((requested_start_seconds - earliest_date_seconds) < 0)

{

printf ("Start datetime out of range. Must be no earlier than\n");
printf ("$s\n", earliestdate_avail);

exit (EXIT_FAILURE) ;

}

/* check_channel */

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

82

$ cat check_intervals.h
#define SMALL 20
#define LARGE 200

/* prototypes */

char *getkeyfromlocalfile (void);

char *make_query (char[LARGE], char[LARGE]);

char *replString(const char *, const char *, const char *);
void check_intervals (void);

/* global variables */
extern char firstargl];
extern char secargl];

extern char thirdargl[];
extern char endpoint[];
extern char outputfilenamel];

/* defined here, so no extern */
char earliestdate_avail [SMALL];
char latestdate_avail [SMALL];
char volume [SMALL];

S cat check_intervals.c

#include <string.h>

#include <stdio.h>

#include <locale.h>

#include <stdlib.h>

#include "parson.h" /* https://github.com/kgabis/parson/ */
#include "check_intervals.h"

void check_intervals()

{
char chan_to_check[8];
char earliest[SMALL];
char latest[SMALL];
char *myapikeyval;
char other_format[8];
char params[LARGE];
char *response;
char url[LARGE];

JSON_Object *my_obj_1;
JSON_Object *my_obij_2;

JSON_Value *my_7Jjv;
myapikeyval = getkeyfromlocalfile();

/* build our parameters for the query */

/* {"channels":[212], "apikey":"blah"} (note: no quotes around [chan]) */
strlcpy (chan_to_check, "[", sizeof (chan_to_check));

strlcat (chan_to_check, firstarg, sizeof (chan_to_check));

strlcat (chan_to_check, "]", sizeof (chan_to_check));

strlcpy (params, "{\"apikey\":\"", sizeof (params));
strlcat (params, myapikeyval, sizeof (params));
strlcat (params, "\",\"channels\":", sizeof (params));
strlcat (params, chan_to_check, sizeof (params));
strlcat (params, "}", sizeof (params));

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

/* build the endpoint we're going to visit */

strlcpy(url, "https://", sizeof (params));

strlcat (url, endpoint, sizeof (params));

strlcat (url, "/siebatchd/vl/siebatch/chdetails", sizeof (params));

/* actually do the query */

/* =999 is a magic value meaning no file output */
strlcpy (outputfilename, "-999", 5);

response = make_query (url, params);

/* Now process the JSON results */

/* get the Json string, parse it, and extract the channels and descrp */
my_Jjv = Jjson_parse_string(response);

/* it's all under the channels leg of the JSON tree */
my_obj_1 = json_object_get_object (json_object (my_jv), "channels");

/* to pick a chan, we need the number w/o brackets but with ch */
strlcpy (other_ format, "ch", sizeof (other_ format));
strlcat (other_format, firstarg, sizeof (other_format));

/* we're now down a specific channel number in the JSON tree */
my_obj_2 = json_object_get_object (my_obj_1, other_format);

/* extract the two values we actually care about */
/* NOT printing anything here , just load it into the struct */
strlcpy(earliestdate_avail,
json_object_get_string(my_obj_2, "earliest"),
sizeof (earliest));
strlcpy (latestdate_avail,
json_object_get_string(my_obj_2, "latest"),
sizeof (latest));
} /* check_intervals */

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

84

$ cat convert_relative times_to_real datetimes.h
#define SMALL 20

/* prototypes */
char *subString(const char *, int, int, char *);

/* global variables */

extern char secargl];

extern char thirdargl];

char saved_minutes_back [SMALL];

$ cat convert_relative_times_to_real datetimes.c
#include <time.h>

#include <stdlib.h>

#include <string.h>

#include <stdio.h>

#include <time.h>

#include "convert_relative_times_to_real_datetimes.h"

void convert_relative_times_to_real_datetimes ()

{

/* local variables */

long startseconds;
long endingtime_seconds;
long extraseconds;
struct tm gmendingtime;
long mysecondsback;

char *myformat;
char lasttwo[3];

myformat = "%Y-%m-%d %H:%M:%S";

/* time_t is raw epoch seconds */
time_t epochseconds;

/* save a copy of the number of minutes worth of data we want to go */
/* back in relative time */
strlcpy (saved_minutes_back, thirdarg, sizeof (saved_minutes_back));

/* when retrieving data, there are two options: */
/x ok
/* one option is relative times; if we get one, make it a real time */

/* x/

/* in relative format, the initial "ending time" is actually the minutes */

/* worth of data we want to retrieve */

/*ox/

/* the "real" ending datetime will be created from the current GMT time */

/* we will be doing math on the epoch seconds */

epochseconds = time (NULL) ;
gmendingtime *gmtime (&epochseconds) ;

/* now compute the formatted ending date time in standard */
/* YYYY-MM-DD HH:MM:SS */
strftime (thirdarg, SMALL, myformat, &gmendingtime);

/* find Jjust the seconds from that string (we need the starting point) */
lasttwo[0] = 0; /* make sure the string is NULL terminated */
subString(thirdarg, (strlen(thirdarg) - 2), 2, lasttwo);

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

85

extraseconds = atol (lasttwo);
/* subtract the seconds from the full datetime to end up with 00 seconds
endingtime_seconds = timegm(&gmendingtime) - extraseconds;

/* let's now work on the starting time */

/* we compute the "real" starting datetime by offsetting backwards */
/* our to-be-modified datetime is in epoch seconds, so convert min */
/* to seconds */

mysecondsback = atol (saved_minutes_back) * 60;
startseconds = endingtime_seconds - mysecondsback;
struct tm ts = *gmtime (&startseconds);

strftime (secarg, SMALL, myformat, &ts);
strftime (thirdarg, SMALL, myformat, gmtime (&endingtime_seconds));
} /* convert_relative_times_to_real_datetimes */

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

87
$ cat fix_times.h
#define SMALL 20
#define BIG 200

/* prototypes */

void convert_relative_times_to_real_datetimes (void);
void fix_times (void);

void validate_input_time_date_format (char [SMALL]) ;

/* global variables */
extern char secargl];
extern char thirdargl];

$ cat fix times.c
#include <stdio.h>
#include <strings.h>
#include "fix_times.h"

void fix_times (void)

{
/* handles calling the rest of the routines to fix up times */
/* arguments come in from the command line as global variables */
/* so we don't pass them in */

/* if relative times, replace the ending time with the current GMT time */
/* set the starting time back by the specified number of minutes */

if (strncmp(secarg, "now", 4) == 0)
{
(void) convert_relative_times_to_real_datetimes();

}

else

{
/* we have real timedate stamps for starting and ending datetimes */
/* process the starting datetime value... */
/* correctly written datetime value? */

(void)validate_input_time_date_format (secarqg);

/* repeat for the ending datetime value... */
(void)validate_input_time_date_format (thirdarqg);

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

$ cat getkeyfromlocalfile.h
/* global variables */

char filepath[200];

char *myapikey;

char *homedir;

FILE *f;

size_t len = 0;
ssize_t linelength;

$ cat getkeyfromlocalfile.c
#include <unistd.h>

#include <sys/types.h>

#include <pwd.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include "getkeyfromlocalfile.h"

char *getkeyfromlocalfile ()

{
/* Retrieves the SIE-Batch API key */

if ((homedir = getenv ("HOME")) == NULL)
{

homedir = getpwuid(getuid())->pw_dir;
}

strlcpy(filepath, homedir, sizeof (filepath));
strlcat (filepath, "/.sie—-get-key.txt", sizeof (filepath));

if (access(filepath, F_OK) == -1)

{
printf ("\nERROR:\n\n No SIE-Batch API keyfile at ~/.sie—get-key.txt\n");

exit (1);
}
f = fopen(filepath, "r");
linelength = getline (&myapikey, &len, f);
if (myapikey[linelength - 1] == '\n")
{

myapikey([linelength - 1] = 0;

}
fclose (f);

return (myapikey);

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

$ cat isNumeric.c
#include <ctype.h>
#include <stdlib.h>

/* see https://rosettacode.org/wiki/Determine_if_a_string_is_numeric#C */

int isNumeric (const char *s)
{
if (s == NULL || *s == '\0' || isspace(*s))
{
return (0) ;

}

char *p;
strtod (s, é&p);
return (*p == '\0");

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

89

90
$ cat list_channels.h
#define LARGE 200

/* prototypes */

char *make_query (char[LARGE], char[LARGE]);

void list_channels();

char *getkeyfromlocalfile();

char *replString(const char *, const char *, const char *);

/* global variables */
extern char endpoint[];
extern char outputfilenamel];

$ cat list_channels.c
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include "parson.h"
#include "list_channels.h"

void list_channels ()
{

/* no real args come 1in because we always just want to list all channels */

char queryURL[LARGE];
char params[LARGE];

char *returned_content;
char *myapikeyval;

myapikeyval = getkeyfromlocalfile();

strlcpy (params, "{\"apikey\":\"", sizeof (params));

strlcat (params, myapikeyval, sizeof (params));

strlcat (params, "\"}", sizeof (params));

strlcpy (queryURL, "https://", sizeof (queryURL));

strlcat (queryURL, endpoint, sizeof (queryURL));

strlcat (queryURL, "/siebatchd/vl/validate", sizeof (queryURL)) ;

strlcpy (outputfilename, "-999", 5);
returned_content = make_query (queryURL, params);

/* json processing */

struct keys { char keyI[7]1; };
struct vals { char wval[70]; };

struct keys mykeys[24];
struct vals myjvals[24];

JSON_Value *my_jv;

JSON_Object *my_obj_1;
JSON_Object *my_obj_2;

int J_1i;
int J_7;

char tempkey[7];
Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

char tempval[70];

/* parse the Jjson string, extract and print the channels and descrips */
my_Jjv = Jjson_parse_string(returned_content);

/* the data we need is under profile.siebatch */

/* NOTE: do NOT get distracted by the profile.channels object! */

my_obj_1 = json_object_dotget_object (json_object (my_jv),
"profile.siebatch");

/* pull a list of channel numbers */

for (j_i = 0; j_i < json_object_get_count (my_obj_1); Jj_i++)

{
/* we know how many objects now, but what are the object names? */
sprintf (mykeys[j_1i].key, "%s", Json_object_get_name(my_obj_1, j_1i));

/* now that we've got the names, step through those objects */
my_obj_2 = json_object_get_object (my_obj_1, mykeys[j_i].key);

/* the channel description's the last thing we need */

sprintf (myjvals[j_i].val, "%s",
json_object_get_string(my_obj_2, "description"));

}

/* the channel names are prefixed with ch, remove that for sorting */
for (j_i = 0; (j_i < json_object_get_count (my_obj_1)); Jj_i++)
{

""),

strlcpy (tempkey, replString(mykeys([j_i].key, "ch",
sizeof (tempkey));
/* now restore the ch-less keys to their original location */
strlcpy (mykeys[j_1i].key, tempkey, sizeof (mykeys[]j_1i]));
}

/* crumby little bubblesort (works fine for a tiny hash like this one) */
for (j_j = 0; (j_J < Json_object_get_count (my_obj_1) - 1); J_j++)
{
for (j_i = 0; (j_i < (json_object_get_count (my_obj_1) - j_3j — 1)); J_i++)
{
if (atoi (mykeys[j_il.key) > atoi (mykeys[j_i + 1].key))
{
strlcpy (tempkey, mykeys[]j_i].key, sizeof (tempkey));
strlcpy (tempval, myjvals[j_i].val, sizeof (tempval));

strlcpy (mykeys[j_i] .key, mykeys[j_i + 1].key, sizeof (mykeys[j_i].key));
strlcpy (myjvals[j_i].val, myjvals([j_1i + 1].val, sizeof (myjvals[j_i].val));

strlcpy (mykeys[j_i + 1].key, tempkey, sizeof (mykeys[]j_1i].key));
strlcpy(myjvals[j_i + 1].val, tempval, sizeof (myjvals[j_i].val));

}

/* print the actual channel listing */
for (j_i = 0; (j_i < json_object_get_count (my_obj_1)); Jj_i++)
{
printf ("ch%s %s\n", mykeys[]j_i].key, myJjvals[j_i].val);
}
exit (EXIT_SUCCESS) ;
} /* list_channels */

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

91

$ cat make_query.h
#define LARGE 200

/* memory handling */
/* see https://curl.haxx.se/libcurl/c/getinmemory.html */

struct MemoryStruct
{
char * memory;
size_t size;

}i

/* function declarations */
char *make_query (char[LARGE], char[LARGE]);

/* global variables */
extern char useproxyl[];
extern char outputfilename[LARGE];

$ cat make_gquery.c
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <stdbool.h>
#include <curl/curl.h>
#include <fcntl.h>
#include <unistd.h>
#include "make_query.h"

/* memory handling */
/* see https://curl.haxx.se/libcurl/c/getinmemory.html */

static size_t WriteMemoryCallback (void *contents, size_t size,
size_t nmemb, void *userp)
{
size_t realsize = size * nmemb;
struct MemoryStruct *mem (struct MemoryStruct *)userp;

char *ptr = realloc (mem->memory, mem->size + realsize + 1);

if (ptr == NULL)

{
/* out of memory! */
printf ("not enough memory (realloc returned NULL)\n");
return (0) ;

mem—>memory = ptr;

memcpy (& (mem—>memory [mem—->size]), contents, realsize);
mem—->size += realsize;

mem->memory [mem->size] = 0;

return (realsize);

char *make_query (char url[LARGE], char params[LARGE])
{

/* variables */

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

92

CURL * mycurl;
CURLcode res;
FILE * f = NULL;

long http_code = 0;
char errbuf [CURL_ERROR_SIZE];
struct curl_slist * list = NULL;

struct MemoryStruct chunk;

/* the libcurl example code requires use of this malloc/realloc */
chunk.memory = malloc(l); /* grown as needed by the realloc above

chunk.size = 0; /* no data at this point */
double tries = 0;
double elapsed = 0;
bool done = false;
if (strncmp (outputfilename, "-999", 5) != 0)
{
f = fopen(outputfilename, "wb");
}
mycurl = curl_easy_init();

/* if needed for debugging */
/* curl_easy_setopt (mycurl, CURLOPT_VERBOSE, 1L); */

/* the end point we're gong to visit */
curl_easy_setopt (mycurl, CURLOPT_URL, url);

/* force IPv4 only for now */
curl_easy_setopt (mycurl, CURLOPT_IPRESOLVE, CURL_IPRESOLVE_V4);

/* we're doing a POST */
curl_easy_setopt (mycurl, CURLOPT_POST, true);

/* pass our arguments to the query */
curl_easy_setopt (mycurl, CURLOPT_POSTFIELDS, params);

/* redirect if need be */
curl_easy_setopt (mycurl, CURLOPT_FOLLOWLOCATION, 1L);

/* we pass an HTTP header to ensure it's a JSON world */
list = curl_slist_append(list, "Content-Type: application/Jjson");
curl_easy_setopt (mycurl, CURLOPT_HTTPHEADER, list);

/* handle timeouts */

curl_easy_setopt (mycurl, CURLOPT_CONNECTTIMEOUT, 30L);
curl_easy_setopt (mycurl, CURLOPT_TIMEOUT, 3000L);
curl_easy_setopt (mycurl, CURLOPT_USERAGENT, "sie_get_c/1.0");

/* connect via a proxy or connect directly with SSL/TLS? */
if (strcmp (useproxy, "yes") == 0)
{
/* printf("trying to use the proxy...\n"); */
curl_easy_setopt (mycurl, CURLOPT_PROXY, "127.0.0.1");
curl_easy_setopt (mycurl, CURLOPT_PROXYPORT, 1080);
curl_easy_setopt (mycurl, CURLOPT_PROXYTYPE, CURLPROXY_SOCKS)S);
}

else

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

*/

93

/* printf("trying to connect directly...\n"); */
curl_easy_setopt (mycurl, CURLOPT_SSL_VERIFYPEER, 1);
curl_easy_setopt (mycurl, CURLOPT_SSL_VERIFYHOST, 1);

/* write the actual data files directly to the outputfile */

/* or for (apikey check, channel listing, etc.) we're Jjust */
/* going to write to a buffer (and then return that)) */
if (strncmp (outputfilename, "-999", 5) == 0)

/* printf ("writing to the function, not to a file\n"); */
/* send all data to this function */
curl_easy_setopt (mycurl, CURLOPT_WRITEFUNCTION,
WriteMemoryCallback) ;
/* we pass our 'chunk' struct to the callback function */
curl_easy_setopt (mycurl, CURLOPT_WRITEDATA,
(void *) &chunk);
}
else
{
/* printf ("writing directly to the file\n"); */
curl_easy_setopt (mycurl, CURLOPT_WRITEDATA, f);
}

/* try the query three times, just in case there's an */
/* intermittent issue */
while (tries != 3 && !done)
{
/* do the actual curl command */
res = curl_easy_perform(mycurl);
/* printf ("after curl_easy_perform, res=%d\n",res); */

/* was the request successful? */
curl_easy_getinfo (mycurl, CURLINFO_RESPONSE_CODE, &http_code);
/* printf ("Response code=%1d\n", http_code); */

if (res != CURLE_OK)

{
size_t len = strlen (errbuf);
fprintf (stderr, "\nlibcurl: (%d) ", res);
if (len)

{
fprintf (stderr, "%s%s", errbuf,
((errbuf[len — 1] !'= "\n"'") 2 "\n" : ""));
}

else

{

fprintf (stderr, "%$s\n", curl_easy_strerror (res));

}

/* how long did it take? */
curl_easy_getinfo (mycurl, CURLINFO_TOTAL_TIME, é&elapsed);
/* printf ("Elapsed time=%f\n", elapsed); */

/* how big's the download? we primarily care about short downloads */
curl_off_t cl;
res = curl_easy_getinfo (mycurl,

CURLINFO_CONTENT_LENGTH_DOWNLOAD_T, &cl);

if (!res)

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

94

}

/* printf ("Download size: %" CURL_FORMAT_CURL_OFF_T "\n", cl);

if (res != CURLE_OK || http_code != 200)
{
printf ("tries = %$f\n", tries);
}
else
{
done = true;

}
}

curl_easy_cleanup (mycurl) ;
curl_global_cleanup();

if (strncmp (outputfilename, "-999", 5) == 0)
{
/* return results from the query */
return (chunk.memory) ;

}

else

{

/* this means that we've written a file with our

exit (0);
}

/* make_query */

output */

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

*/

95

$ cat one_real_arg.h
extern int myargcount;
extern char firstargl[];
extern char secargl];
extern char thirdargl];

/* prototypes */

void list_channels (void);

void one_real_arg(void);

void print_usage_info (void);

void format_and printout_chan_time_limits (void);
voild printout_intervals (void);

char *validateapikeyonline();

int isNumeric (char *);

int search_a_list (const char *, const char **const);

$ cat one_real_arg.c
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <curl/curl.h>
#include "one_real_arg.h"

void one_real_ arg(void)
{

/* constants */

const char *defined_channels[] =

{
|124n, |125n, |127n, n42n,
"80", "114", "115", |1204n,
"206", "20'7", "208", "211",
"212", "213", "214", "221",
NULL

bi

/* NOTE: last entry in above list MUST be NULL as shown! */

/* what did the user want to do? */
if (strncmp(firstarg, "checkkey", 8) == 0)

/* check the user's key for validity and exit */
printf ("API key status is %s\n", validateapikeyonline());
exit (EXIT_SUCCESS) ;

}

else if (strncmp(firstarg, "channels", 8) == 0)

{
/* list channels for the user and exit */
(void) list_channels () ;
exit (EXIT_SUCCESS) ;

}

else

{

/* The only other options should be a specific numeric channel */

/* non-numeric single argument (unknown command) */

if (! (isNumeric(firstarqg)))

{
printf ("not a channel number nor a known command\n");
exit (EXIT_FAILURE) ;

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

/* channel number's too big or too small */
if ((atoi(firstarg) < 10) || (atoi(firstarg) > 255))

printf ("out of range SIE-Batch API channel\n");
exit (EXIT_FAILURE) ;

/* did the user ask for a channel this script doesn't know about? */
if (search_a_list(firstarg, defined_channels) == -1)

printf ("Channel not currently available from this script\n");
exit (EXIT_FAILURE);
}

/* get earliest available datetime, latest available datetime */
/* and the volume that range represents for the specified channel */

/* retrieve details about a specific channel the user asked about */
(void)printout_intervals();
exit (EXIT_SUCCESS) ;

}

} /* one_real_arg */

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

parson.c and parson.h:

See http://kgabis.github.com/parson/

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

98

99
$ cat print_usage_info.h
/* prototypes */
void print_usage_info (void);

$ cat print_usage_info.c
#include <stdlib.h>

#include <stdio.h>

#include "print_usage_info.h"

void print_usage_info (void)

{

printf ("Usage:\n\n");

printf (" sie_get_c channel \"now\" minutesBack\n");

printf (" Example: sie_get_c 212 now 15\n\n");

printf ("OR\n\n") ;

printf (" sie_get_c channel \"startdatetime\" \"enddatetime\"\n");
printf (" Example: sie_get_c 212 \"2020-01-07 00:13:00\" \"2020-01-07

00:28:00\"\n\n");
printf ("Convenience functions:\n\n");

printf (" Check SIE-Batch API key: sie_get_c checkkey\n");

printf (" Get a listing of channels: sie_get_c channels\n");

printf (" Get datetime range and volume for a channel: sie_get_c 212\n\n");

printf ("Notes:\n");

printf (" Datetimes are UTC and must be quoted. (Current UTC datetime: $ date -u
)A\n") ;

printf (" Zero pad any single digit months, days, hours or minutes.\n");

printf (" Seconds must be entered as part of the UTC datetimes (but are ignored)\n");

printf (" Ending datetime in the future? It will be clamped to current
datetime.\n\n");

printf (" minutesBack must be >= 1 and a whole number\n");

exit (EXIT_SUCCESS) ;

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

100
$ cat printout_intervals.h
#define SMALL 20
#define LARGE 200

/* prototypes */

char *getkeyfromlocalfile (void);

char *make_query (char[LARGE], char[LARGE]);

char *replString(const char *, const char *, const char *);
void printout_intervals (void);

/* global variables */

extern char firstargl];
extern char secargl];

extern char thirdargl[];
extern char endpoint[];
extern char outputfilenamel];

/* defined here, so no extern */
char volume [SMALL];

$ cat printout_intervals.c

#include <string.h>

#include <stdio.h>

#include <locale.h>

#include <stdlib.h>

#include "parson.h" /* https://github.com/kgabis/parson/ */
#include "printout_intervals.h"

void printout_intervals()
{
char chan_to_check([8];
char earliest[SMALL]
char fmtfirstargl[8];
char latest[SMALL];
char *myapikeyval;
char other_format[8];
char params[LARGE];
char *response;
char url[LARGE];
char volume_string[SMALL];

14

double bigness;

JSON_Object *my_obj_1;
JSON_Object *my_obj_2;

JSON_Value *my_jv;
myapikeyval = getkeyfromlocalfile();

/* build our parameters for the query */

/* {"channels":[212], "apikey":"blah"} (note: no quotes around [chan]) */
strlcpy(chan_to_check, "[", sizeof (chan_to_check));

strlcat (chan_to_check, firstarg, sizeof (chan_to_check));

strlcat (chan_to_check, "]", sizeof (chan_to_check));

strlcpy (params, "{\"apikey\":\"", sizeof (params));
strlcat (params, myapikeyval, sizeof (params));
strlcat (params, "\",\"channels\":", sizeof (params));
strlcat (params, chan_to_check, sizeof (params));

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

101

strlcat (params, "}", sizeof (params));

/* build the endpoint we're going to visit */

strlcpy (url, "https://", sizeof (params));

strlcat (url, endpoint, sizeof (params));

strlcat (url, "/siebatchd/vl/siebatch/chdetails", sizeof (params));

/* actually do the query */

/* =999 is a magic value meaning no file output */
strlcpy (outputfilename, "-999", 5);

response = make_dquery (url, params);

/* Now process the JSON results */

/* get the Jjson string, parse it, and extract the channels and descrp */
my_Jjv = Jjson_parse_string(response);

/* it's all under the channels leg of the JSON tree */
my_obj_1 = json_object_get_object (json_object (my_jv), "channels");

/* to pick a chan, we need the number w/o brackets but with ch */
strlcpy (other_ format, "ch", sizeof (other_ format));
strlcat (other_format, firstarg, sizeof (other_format));

/* we're now down a specific channel number in the JSON tree */
my_obj_2 = json_object_get_object (my_obj_1, other_format);

/* extract the three values we actually care about */

strlcpy(earliest, Jjson_object_get_string(my_obj_2, "earliest"),
sizeof (earliest));

strlcpy(latest, json_object_get_string(my_obj_2, "latest"),
sizeof (latest));

/* this one's numeric, not a string */

bigness = json_object_get_number (my_obij_2, "size");

/* format the volume with thousands commas */
setlocale (LC_NUMERIC, "");
if (bigness >= 999.0)
{
snprintf (volume_string, SMALL, "%'d", (int)bigness);

}

/* could add a header, but it's pretty self-obvious, right? */
/* printf('chan earliest datetime latest datetime octets\n') */

/* strip the square brackets from the channel number for output*/

strlcpy (fmtfirstarg, replString(firstarg, "I[", ""),
sizeof (fmtfirstarqg));
strlcpy (fmtfirstarg, replString(fmtfirstarg, "1", ""),

sizeof (fmtfirstarqg));
printf ("%s \"%s\" \"%s\" $s\n",

fmtfirstarg, earliest, latest, volume_string);
} /* printout_intervals */

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

$ cat replString.c

/* https://creativeandcritical.net/str-replace-c */

#include <string.h>
#include <stdlib.h>
#include <stddef.h>

/* replace a substring with a new substring */

/* modified to use strlcpy */

#if (_ _STDC_VERSION__ >= 199901L)
include <stdint.h>
#endif

char *replString(const char *, const char *, const char *);

char *replString(const char *str,

{

const char *from,

/* Adjust each of the below values to suit your needs. */

const char *to)

/* Increment positions cache size initially by this number. */
size_t cache_sz_inc = 16;
/* Thereafter, each time capacity needs to be increased,
* multiply the increment by this factor. */
const size_t cache_sz_inc_factor =
/* But never increment capacity by more than this number. */
const size_t cache_sz_inc_max = 1048576;
char * pret, *ret = NULL;
const char *pstr2, *pstr = str;
size_t i, count = 0;
#if (__STDC_VERSION_ _ >= 199901L)
uintptr_t *pos_cache_tmp, *pos_cache = NULL;
#else
ptrdiff_t *pos_cache_tmp, *pos_cache = NULL;
fendif
size_t cache_sz = 0;
size_t cpylen, orglen, retlen, fromlen = strlen(from);

/* Find all matches and cache their positions. */

while ((pstr2 = strstr(pstr, from))

{

count++;

!= NULL)

/* Increase the cache size when necessary. */

if (cache_sz < count)

{

cache_sz += cache_sz_inc;
pos_cache_tmp = realloc (pos_cache, sizeof (*pos_cache)
if (pos_cache_tmp == NULL)

{
goto end_repl_str;
}

else

{

pos_cache = pos_cache_tmp;

}

cache_sz_inc *= cache_sz_inc_factor;
if (cache_sz_inc > cache_sz_inc_max)

* cache_sz);

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

102

103

cache_sz_inc = cache_sz_inc_max;

pos_cache[count - 1] = pstr2 - str;
pstr = pstr2 + fromlen;

orglen = pstr — str + strlen(pstr);
/* Allocate memory for the post-replacement string. */

if (count > 0)

{

tolen = strlen(to);

retlen = orglen + (tolen - fromlen) * count;
}
else
{

retlen = orglen;

}

ret = malloc(retlen + 1);
if (ret == NULL)

{

goto end_repl_str;

if (count == 0)

/* If no matches, then Jjust duplicate the string. */
strlcpy(ret, str, sizeof(ret));
}
else
{
/* Otherwise, duplicate the string whilst performing
* the replacements using the position cache. */
pret = ret;
memcpy (pret, str, pos_cachel[0]);
pret += pos_cachel[0];
for (i = 0; i < count; i++)
{
memcpy (pret, to, tolen);
pret += tolen;
pstr = str + pos_cache[i] + fromlen;
cpylen (1 == count - 1 ? orglen : pos_cache[i + 1]) - pos_cache[i] - fromlen;
memcpy (pret, pstr, cpylen);
pret += cpylen;

}
ret [retlen] = '\0';

end_repl_str:

/* Free the cache and return the post-replacement string,
* which will be NULL in the event of an error. */
free (pos_cache);
return (ret);
} /* replString */

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

104

$ cat search_a_list.c
/* https://rosettacode.org/wiki/Search_a_list#C */

#include <stdio.h>
#include <string.h>

int search_a_list (const char *needle, const char **hs)

{

int 1 = 0;

while (hs[i] != NULL)

{
if (strcmp(hs[i], needle) == 0)

{

return (i) ;
}
i++;
}

return(-1);

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

105
$ cat sie_get_c.h
#define SMALL 20

/* global variables */
char endpoint[] = "batch.sie-remote.net";
char useproxy[] = "no"; /* "yes" or "no" */

int myargcount;

char firstarg[SMALL]; /* NULL, an actual channum, checkkey, channels */
char secarg[SMALL]; /* NULL, "2020-05-25 12:14:42" */

char thirdarg[SMALL]; /* NULL, "2020-05-25 12:14:42" */

$ cat sie_get_c.c
#include <stdlib.h>
#include <string.h>
#include "sie_get_c.h"

int main(int argc, char *argv([])
{
/* prototypes */
void three_real_args (void);
void one_real_arg(void);
void print_usage_info (void);

/* argc=4 --> three arguments */
/* argc=2 --> single argument */
/* argc=1 —--> no arguments */

if (argc == 4)

{
/* we'll pulling actual data */

/* load the globals */

strlcpy(firstarg, argv[l], sizeof(firstargqg));
strlcpy (secarg, argv([2], sizeof(firstarqg));
strlcpy(thirdarg, argv[3], sizeof(firstargqg));

(void)three_real_args();
}
else if (argc == 2)
{

/* checkkey, channels or an actual channel number provided */

/* save that info as a global */
strlcpy(firstarg, argv[l], sizeof(firstargqg));

(void)one_real_arg();
}

else
{

/* wrong number of arguments, provide precis and bail */

(void) print_usage_info () ;
exit (EXIT_FAILURE) ;
}

} /* main */

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

106
$ cat string_fmt_time_ to_seconds.h
/* prototypes */
long string_fmt_time_to_seconds (char *);

/* global variables */

struct tm dt;

long epoch_seconds;

char * string_format_time;

$ cat string_fmt_time_ to_seconds.h
/* prototypes */
long string_fmt_time_to_seconds (char *);

/* global variables */

struct tm dt;

long epoch_seconds;

char * string_format_time;

Joe:sie_get_c joe$ cat string_ fmt_time_to_seconds.c
#include <string.h>

#include <stdio.h>

#include <time.h>

#include "string_fmt_time_to_seconds.h"

long string_ fmt_time_to_seconds (char *string_format_time)

{

/* utility function to convert a string format time to epoch seconds */

strptime (string_format_time, "$Y-%m-%d $H:%$M:%S", &dt);
epoch_seconds = mktime (&dt);

return (epoch_seconds) ;

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

107
$ cat subString.c
#include <string.h>
#include <stdlib.h>

/* get substring */
/* stackoverflow.com/questions/2114377/strings—-in-c-how-to-get-substring */

/* prototype */
char *subString(char *, int, int, char *);

char *subString(char *input, int offset, int len, char *dest)

{

int input_len = strlen (input);

if (offset + len > input_len)

{
return (NULL) ;

}

strncpy (dest, input + offset, len);
return (dest) ;

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

108
$ cat three_real args.h
#define SMALL 20
#define LARGE 200

/* prototypes */

void build_filename (void) ;

void check_channel (void);

void fix_times (void);

char *getkeyfromlocalfile(void);

char *make_query (char[LARGE], char[LARGE]);
void three_real_args (void);

/* global variables */

extern char endpoint[];
extern char firstargll];
extern char secargl];

extern char thirdargl[];
extern char outputfilenamel[];

$ cat three_real_args.c

#include <stdlib.h>

#include <string.h>

#include <time.h>

#include <curl/curl.h>

#include "parson.h" /* https://github.com/kgabis/parson/ */
#include "three_real_args.h"

void three_real_args (void)
{
char params[LARGE];
char queryURL[LARGE];
char *myapikey;

/* make sure the times are sane (right format and not in the future) */
(void) fix_times();

/* make sure the times are in-range for this particular channel */
(void) check_channel () ;

/* construct the output filename from the channel and dates */
(void)build_filename () ;

/* retrieve the API key we need */
myapikey = getkeyfromlocalfile();

/* construct the parameters we're going to pass—in */
strlcpy (params, "{\"apikey\":\"", sizeof (params));
strlcat (params, myapikey, sizeof (params));

(
strlcat (params, "\",\"channel\":", sizeof (params));
strlcat (params, firstarg, sizeof (params));
strlcat (params, ",\"start_time\":\"", sizeof (params));
strlcat (params, secarg, sizeof (params));
strlcat (params, "\", \"end_time\":\"", sizeof (params));
strlcat (params, thirdarg, sizeof (params));
strlcat (params, "\"}", sizeof (params));

strlcpy (queryURL, "https://", sizeof (queryURL));
strlcat (queryURL, endpoint, sizeof (queryURL));
strlcat (queryURL, "/siebatchd/vl/siebatch/chfetch", sizeof (queryURL)) ;

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

109
(void)make_query (queryURL, params);

exit (EXIT_SUCCESS) ;
} /* three_real_args */

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

$ cat validate_input_time_date_format.h
/* prototypes */
void validate_input_time_date_format (char *);

$ cat validate_input_time_date_format.c
#include <stdlib.h>

#include <stdio.h>

#include <sys/types.h>

#include <regex.h>

#include "validate_input_time_date_format.h"

void validate_input_time_date_format (char *mydatetime)

{
/* make sure the user has followed the required datetime format */
/* parameter is datetime to format check. if invalid, abort run. */
/* if valid, return the validated (but unchanged) datetime (could skip */
/* doing this for now, but at some point we might decide to fix up bad */
/* string formatting as a convenience to the user, so...) */

/* local variables */
regex_t myregex;
int myreti;
const char *mypattern;

mypattern =
"~[0-91{4}-[0-91{2}-[0-91{2} [0-91{2}:[0-9]1{2}:[0-9]1{2}S";

myreti = regcomp (&myregex, mypattern, REG_EXTENDED) ;
if (myreti)
{
printf ("Problem compiling myregex\n");
exit (1) ;
}

myreti = regexec (&myregex, mydatetime, 0, NULL, 0);

if (!'myreti)
{

// printf ("Match\n");
}

else if (myreti == REG_NOMATCH)

{
printf ("bad time format —-- must be \"YYYY-MM-DD HH:MM:SS\"\n");
exit (1) ;

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

111
$ cat validateapikeyonline.h
#define SMALL 20
#define LARGE 200

/* prototypes */

char *validateapikeyonline (int, char *, char *);
char *getkeyfromlocalfile(void);

char *make_query (char[LARGE], char[LARGE]);

char *result [SMALL];

/* global variables */
extern char endpoint|[];
extern char outputfilename[LARGE];

$ cat validateapikeyonline.c
#include <string.h>

#include <stdio.h>

#include "parson.h"

#include "validateapikeyonline.h"

char *validateapikeyonline ()
{
/* check the API key for validity on the live SIE-Batch API server */

/* local variables */

char * myapikeyval;

char params [LARGE] ;
char queryURL[LARGE] ;
char * returned_content;

const char *status_from_ json;

JSON_Value * my_Jjson_value;
JSON_Object *my_json_obiject;

/* get the SIE-Batch API key from local file */
myapikeyval = getkeyfromlocalfile();

/* assemble the parameter for checking online */
strlcpy (params, "{\"apikey\":\"", sizeof (params));
strlcat (params, myapikeyval, sizeof (params));
strlcat (params, "\"}", sizeof (params));

/* assemble the endpoint we'll visit to check */

strlcpy (queryURL, "https://", sizeof (params));

strlcat (queryURL, endpoint, sizeof (params));

strlcat (queryURL, "/siebatchd/vl/validate", sizeof (params));

/* make the query (-999 == don't write output to a file) */
strlcpy (outputfilename, "-999", 5);
returned_content = make_query (queryURL, params);

/* Json processing */

/* load the returned JSON string */
my_Jjson_value = Jjson_parse_string(returned_content);

/* it initially comes in as a value, we need an object */
my_json_object = json_object (my_json_value);

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

112

/* extract the one value we need to confirm that the key's okay */
status_from_json =

json_object_get_string(my_json_object, "_status");

return ((char *)status_from_ json);
} /* validateapikeyonline */

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

$ cat ~/.uncrustify.cfg
from

https://raw.githubusercontent.com/uncrustify/uncrustify/master/documentation/htdocs/ben.c

fg.txt
newlines

indent_with_tabs =0
input_tab_size
output_tab_size
indent_columns

indent_label
indent_align_string
indent_brace

indent_class

nl_start_of_file =
nl_start_of_file_min
nl_end_of_file

nl_end _of_file min

nl_max
nl_before_block_comment
nl_after_func_body
nl_after_func_proto_group

nl_assign_brace
nl_enum_brace
nl_union_brace
nl_struct_brace
nl_do_brace
nl_if brace =
nl_for_ brace
nl_else_brace
nl_while_brace
nl_switch_brace
nl_func_var_def_blk
nl_before_case
nl_fcall_brace
nl_fdef brace
nl_after_return
nl_brace_while
nl_brace_else
nl_squeeze_ifdef

= add
add

pos_bool

TRUE

remove

trail

eat_blanks_before_close_brace =

eat_blanks_after_open_brace

mod_paren_on_return
mod_full_brace_if =
mod_full_brace_for
mod_full_brace_do =
mod_full brace_while

add

add

sp_before_byref
sp_before_semi
Sp_paren_paren
Sp_return_paren
sp_sizeof_paren

= LF # AUTO (default), CRLF, CR, or LF

l=indent to level only, 2=indent with tabs

8 # original tab size
3 # new tab size
output_tab_size
0 # pos: absolute col, neg: relative column
False # align broken strings
0
true
0
force
1
4
2
2
2
add # w_ {n vs "= \n {n
add # "enum {" vs "enum \n {"
add # "union {" vs "union \n {"
add # "struct {" vs "struct \n {"
"do {" vs "do \n {"
wif () {n vs "if () \1’1 {n
add # "for () {" vs "for () \n {"
add # "else {" vs "else \n {"
add # "while () {" vs "while () \n {"
add # "switch () {" vs "switch () \n {"
1
1
add # "foo() {" vs "foo()\n{"
add # "int foo() {" vs "int foo ()\n{"
TRUE
remove
add
BOOL ops on trailing end
TRUE
TRUE
add # "return 1;" vs "return (1);"
"if (a) a-—;" vs "if (a) { a-—; }"
add # "for () a-——;" vs "for () { a-——; "
"do a-—; while ();" vs "do { a-—; } while ();"
add # "while (a) a--;" vs "while (a) { a-—-; }I"
remove
remove
remove # space between ((and))
remove # "return (1);" vs "return(l);"
remove # "sizeof (int)" vs "sizeof (int)"

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

sp_before_sparen
sp_after_sparen
sp_after_cast
sp_inside_braces
sp_inside_braces_struct
sp_inside_braces_enum
sp_inside_paren
sp_inside_fparen
sp_inside_sparen
sp_inside_square
#sp_type_func
sp_assign

sp_arith

sp_bool

Sp_compare
sp_assign
sp_after_comma
sp_func_def_paren
sp_func_call_paren
sp_func_proto_paren
sp_func_class_paren
sp_before_angle
sp_after_angle
sp_inside_angle
sp_sparen_brace
sp_fparen_brace
sp_after_ptr_star
sp_before_ptr_star
sp_between_ptr_star

align_with_tabs
align_on_tabstop
align_enum_equ_span
align_nl_cont
align_var_def_span
align_var_def_thresh
align_var_def_inline
align_var_def_colon
align_assign_span
align_assign_thresh
align_struct_init_span
align_var_struct_span
align_right_cmt_span
align_pp_define_span
align_pp_define_gap
align_number_right
align_typedef_span
align_typedef_gap

cmt_star_cont

force
= force
= remove
force
= force
= force
= remove
remove
remove
remove
= ignore
force
force
= force
force
force
= force
remove #
= remove
= remove
= remove
force
force
remove
= add
= add
remove
= force
= remove

= FALSE

= TRUE

=12
= TRUE
= TRUE

o
w o W
o

([l
H o
2s)
=
=

= TRUE

114

"if (" Vs "if("
"if () {" Vs "if (){"
"(int) a" vs "(int)a"
"{ l }" VS "{l}"
"{ l }" Vs "{l}"
"{ l }" Vs "{l}"
"int foo (){" vs "int foo () {"
"foo (" vs "fool("
"int foo ();" vs "int foo();"

use tabs to align
align on tabstops

Copyright © 2020 Farsight Security, Inc. All trademarks are properties of their respective owners.

