

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

2

"Bang_Question:" A Tutorial Proof-of-Concept

Cyber Investigative Framework

Version 1.1

March 2021

Joe St Sauver, Ph.D.

<stsauver@fsi.io>

Distinguished Scientist and Director of Research

Farsight Security, Inc.

Copyright(c) 2021, Farsight Security, Inc.

TLP White : Disclosure is not limited.

On the "bangquestion" name and icon: Some may wonder where the program's title and icon came from.

The answer is simple: often systems and networks will be running normally when suddenly something "flies

in from left field" and "bangs into thing"s ("!"). That may leave you wanting to know "Now what the heck

was THAT?" ("?") The application name & icon seemed to capture that "bang_question" experience perfectly.

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

3

TABLE OF CONTENTS

PART I. TEST APP WITH THREE STATIC TABS

1. INTRODUCTION ... 5

2. THE INVESTIGATIVE PROCESS: GOING FROM ARTISNAL CRAFTSMANSHIP TO THE ASSEMBLY LINE 6

3. A QUICK NOTE ABOUT PYTHON VERSIONS AND TKINTER .. 8

4. GETTING THE OVERARCHING TKINTER NOTEBOOK STRUCTURE CREATED .. 8

5. TWEAKING THE STYLE A LITTLE .. 10

6. ADDING A MENUBAR, HANDLING CALLBACKS AND DOING A LITTLE INITIAL TESTING 12

7. ADDING A LOG AREA FOR INFORMATIONAL NOTES .. 14

8. SNAGGING A COPY OF A WEBPAGE (IN GENERAL) ... 15

9. USING PYPPETEER TO CAPTURE SCREEN SHOTS .. 18

10. DISPLAYING A SCROLLABLE JPEG IN TKINTER ... 22

11. FILLING IN PASSIVE DNS RRNAME DATA ON OUR THIRD SAMPLE TAB .. 23

12. A QUICK CHECKPOINT BEFORE WE GO ON ... 24

PART II. FULL PROOF-OF-CONCEPT APP WITH DYNAMIC TABS

13. TAB MANAGEMENT AND HANDLING MULTIPLE RUNS .. 34

14. SCRAPING A PAGE .. 48

15. DOING OUR DNSDB QUERIES ... 50

16. HANDLING THE CONTENT FOR THE ASN WHOIS TAB ... 55

17. HANDLING DRAWING THE NETWORK GRAPH (THE CONTENT FOR THE FINAL TAB) 58

18. REMAINING ISSUES ... 60

APPENDICIES

I. INSTALLATION INSTRUCTIONS ... 66

II. FULL SOURCE CODE FOR THE FULL PROOF-OF-CONCEPT APPLICATION ... 68

III. STANDARD LIBRARIES AND THIRD-PARTY PACKAGES ... 87

IV. LICENSES AND ACKNOWLEDGEMENTS ... 89

V. SCHOOL WEB PAGES REVIEWED FOR HEIGHT MEASUREMENT PURPOSES .. 90

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

4

PART I.

TEST APP WITH THREE STATIC TABS

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

5

1. INTRODUCTION

WHO? The audience for this report consists of subject matter experts and cyber security analysts interested in

learning how to script analyses of fully qualified domain names (FQDNs).

WHAT? In the body of this report, we'll dig into the details, but for now, the "10,000 foot" overview is that

when you run the proof-of-concept application, a graphical investigative "notebook" will launch. After you

submit a FQDN that you're interested in, the application will do a series of automated checks, including

attempting to capture a picture of what that site looks like, checking passive DNS for the domain name

(assuming you've got a DNSDB API key), checking Domain/IP/ASN WHOIS, geolocating the IP, etc.

For example, here's what the app's opening (main) tab and the app's (scrollable) screen grab tab look like

for the university site at www.uoregon.edu (sample output available from the other eight tabs omitted here):

WHY? We created this application for two reasons: first, the application can conveniently and efficiently

perform the same routine checks that a trained investigator would normally do manually -- we're just

eliminating the tedious grunt work associated with that process. Second, beyond providing a pragmatically-

useful tool as-shipped, we also wanted to demystify the process and show you HOW we built this tool, so you

can extend it with additional checks you may routinely employ (but which we haven't implemented).

HOW? We built this open-source framework using Python3, Tkinter and a variety of open source libraries.

Details of how we did it and what we learned while doing it can be found in the body of this report.

NOTE: If you don't care about any of the "blah blah blah", and just want installation instructions and

the code for the application, see Appendix I and Appendix II of this report or, for the latest code, see

https://github.com/farsightsec/blog-code/tree/master/bang_question

NOTICE: This is an experimental/proof-of-concept/under-development application. It has known and unknown

flaws and limitations and comes with ABSOLUTELY NO WARRANTY. If you choose to use it, you do so at your

own discretion and agree to assume any/all risks, if any, associated with doing so. You also accept sole

responsibility for any sites you access, and any copyrighted or proprietary data you may retrieve from them.

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

6

2. THE INVESTIGATIVE PROCESS: GOING FROM ARTISNAL CRAFTSMANSHIP TO THE ASSEMBLY LINE

Most subject matter experts have a fairly-well-standardized approach to reviewing domains of interest:

• If a site is unknown (but not believed to be particularly attuned to unexpected visitors) a common first

step might be to "eyeball" the site from a sandboxed browser. The analyst may be looking to see:

o Is the site perhaps impersonating a well-known bank or payment card company?

o Is it attempting to sell something illegal, such as scheduled controlled substances or knock-off brand

name merchandise?

o Or is the site just a regular website, perhaps used by some small business, a school, a church, or some

other organization?

• Next, an analyst will often review the site in Farsight Security's DNSDB Passive DNS (subscription required):

o Where has the site been hosted over time? Was it on just one IP address for a long time? Or has the

site been continually hopping from IP to another?

o What other sites (if any) share the site's current IP address? If that search radius is expanded, is the

neighborhood "typical," or are there a lot of other sketchy-sounding hosts also hosted nearby?

o Does the site use a shared name server or mail server? Does that shared resource lead to any other

interesting discoveries, either in terms of related bad sites or sites that may help with identifying the

owner of the primary site of interest?

• Most analysts will also routinely check WHOIS:

o What does WHOIS for the domain name look like? Is it one that's existed for a long time, or was it just

registered? Does it use a highly regarded registrar, or one particularly popular with miscreants? Is the

domain registered to a well-known company? Or is the domain owner hiding behind a proxy/privacy

registration service?

o How about WHOIS for the IP address that the domain's currently on? (Even if Domain WHOIS has

largely been gutted, IP WHOIS remains surprisingly useable except for some reverse proxy services and

cloud providers)

o How about WHOIS for the AS (Autonomous System) that's announcing/routing that IP? Are there other

network prefixes announced by that same ASN? Or does the ASN have just a single new small block?

• Where is the site's current IP address located, geographically? Is it in the United States? Overseas?

• What does a graphical network diagram of the DNSDB RRname results look like?

• Is the current site listed on one or more blocklists? Conversely, is it listed on any allowlists? Are there

spam, phishing, or malware reports related to the domain or the IP it's using?

• Can we find linkages to other relevant domains by looking at the names on the site's SSL/TLS certificate?

The exact set and sequence of steps an analyst follows, and how they interpret what they see, will vary from

analyst to analyst. The point is not the particular steps that a given analyst employs, or even how they

interpret what they see, but the fact that these are steps that are routinely performed. Any time you hear that

something is being "routinely performed," that's the signal that there may be potential for automation. Rather

than manually performing a routine set of steps time after time after time, why not let a computer do that

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

7

"grunt work" for you automatically and consistently? Often the answer may be, "Well, we'd love to do that --

we just don't know how to automate our processing!"

This document is meant to help teach you to automate your domain analyses. We're going to show you an

example of how to construct a GUI proof-of-concept analysis framework using Python with Tkinter.

Note that our bang_question application isn't a "polished" and "bullet proof" commercial product, but more of

a quick-and-dirty demonstration of the "art of the possible." It doesn't handle "everything" (not even the full

set of analyses mentioned in the bulleted list above!), but it does show examples of handling diverse data

sources, and we think you'll find it easy enough to extend and improve the application to meet your needs.

If you aren't interested in investing that "sweat equity," we totally understand. Obviously, you should feel free

to continue using established manual processes, or to purchase a polished and commercially supported

alternative -- whatever works best for you works great for us too.

For the purpose of this proof of concept, we're just going to take a single interactively-entered fully qualified

domain name (FQDN), and then let our program produce a set of nine representative "notebook" pages:

1. A scrollable screen grab of the Fully Qualified Domain Name (FQDN) [displaying JPEG data]

2. A DNSDB RRname Search of the FQDN [reformatting and displaying JSON text-format data]

3. A DNSDB Rdata Search for FQDN --> IP [ditto]

4. A check of the Domain WHOIS for the FQDN [displaying raw JSON data]

5. A check of the IP WHOIS for the IP the FQDN is currently using [ditto]

6. A check of the ASN WHOIS for ASN announcing the IP that the FQDN is currently using [converting XML

to HTML and displaying the HTML as a JPEG screen shot]

7. A list of the prefixes associated with that ASN [displaying raw text data]

8. A map showing the location associated with the IP address the FQDN is currently using [displaying a

JPEG]

9. A network graph showing the DNSDB RRname search results [displaying a JPEG]

Obviously, that's not all the different things an analyst might do, but it's enough to give you a sense of what's

possible.

If we had to build code to do all those tasks from scratch, that would be quite a project. Fortunately, we can

leverage a variety of Python3 third-party libraries (see the list of libraries in Appendix III).

What we're going to do for the remainder of this report is introduce you to Tkinter and explain how we build

up the overall notebook framework, the main tab, and then each of the other nine tabs. We'll also briefly

discuss what an analyst might be substantively looking for in each tab's content.

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

8

This document is also meant to capture the oddities we ran across along the way -- quirks of Tkinter and other

libraries, plus data oddities, and even policy issues we ran into and resolved (or failed to resolve).

3. A QUICK NOTE ABOUT PYTHON VERSIONS AND TKINTER

This project is explicitly Python3-only, since Python2 went end of life January 1st, 2020.1 In fact, we'll go

beyond that and say that this project is only meant to run on the current version of Python 3, which means

Python 3.9.1 as of the time this was written. Why 3.9.1 or later? Well, as stated in the release notes,2

"3.9.1 is the first version of Python to support macOS 11 Big Sur." That's what we're developing on these days.

We also want to stress that we're using Python 3.9.1 as downloaded from the main Python website.3 This is

important because some Python installations intentionally omit Tkinter, the native Python GUI packages. We

need to have Tkinter available for this project. To ensure we get the "right" Python, we'll be explicitly referring

to /usr/local/bin/python3 in our code since /usr/local/bin/python3 is where we have Python 3.9.1

installed on our system. Your path may vary. You can check your version of Python at that location with:

$ /usr/local/bin/python3 --version
Python 3.9.1

4. GETTING AN OVERARCHING TKINTER NOTEBOOK STRUCTURE CREATED

We begin by considering the application's Tkinter notebook structure. At its’ most basic, we can create a basic

Tkinter notebook layout with just a small chunk of code.

In our real application, we'll have a total of ten tabs, and we'll "create them as we need them" rather than

building them up from, but you can get a sense of how this all works with just a small test program using three

tabs:

$ cat test-notebook.py
#!/usr/local/bin/python3

from tkinter import *
import tkinter as tk
import tkinter.ttk as ttk

root = tk.Tk()
mywindow = tk.Frame(root)
mynotebook = ttk.Notebook(mywindow)

colors: www.science.smith.edu/dftwiki/index.php/Color_Charts_for_TKinter
t1 = tk.Frame(height=200,width=200,background='light goldenrod')
t2 = tk.Frame(height=200, width=200,background='PaleTurquoise1')
t3 = tk.Frame(height=200, width=200,background='plum2')

mynotebook.add(t1, text='Tab #1')
mynotebook.add(t2, text='Tab #2')
mynotebook.add(t3, text='Tab #3')

1 https://www.python.org/doc/sunset-python-2/
2 https://www.python.org/downloads/release/python-391/
3 https://www.python.org/downloads/

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

9

mynotebook.pack(expand=True, side=TOP, anchor=NW)
mywindow.pack(side=TOP, anchor=NW)
mywindow.mainloop()

We're now ready to make that code executable and actually try running it. We'll do that by saying:

$ chmod a+rx test-notebook.py
$./test-notebook.py

This will cause a small "notebook" to be created and run, with each of the frames in the tabs simply being a

different color. We can try clicking through the three tabs to see this:

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

10

A few quick notes about that sample code:

• The import statements are used to bring in the libraries we'll be using. As part of that, we can set up

shortened references (for example, the shorthand "tk" can be used instead of "tkinter" and "ttk" can be

used instead of "tkinter.ttk")

• The widgets we're working with (frames and a notebook) are part of a tree structure, so each will always

have a "parent," culminating ultimately in the apex root window.

• The "pack" statements (near the end of that code) handle automatically arranging the elements,

eliminating the need for either "hard-coding" widget locations using screen coordinates or the potential

use of a grid reference system for relative widget placement.

• Normally we won't use colors as part of our design (perhaps the influence of our earlier days on a

monochome NeXT cube4), but in this case setting the widget's color represents an easy way to quickly see

that we really are looking at three different tabs.

5. TWEAKING THE STYLE A LITTLE

We also want to change the look and feel of our app a little:

• We want to set the root window title -- its default value is just "tk" (as shown in the screenshots above)

• We also want to rereplace the default icon (the default is a stylized Python "rocket ship"):

• Let's also change the overall "ttk.Style" (we prefer the more rectangular "clam" style).

Admittedly these are only cosmetic tweaks, but they're easily enough made. We'll add the following

commands immediately after "root = tk.Tk():"

4 https://en.wikipedia.org/wiki/NeXTcube

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

11

root.title("bang_question")
root.tk.call('wm','iconphoto',root._w,PhotoImage(file='exclamationquestion.gif'))
s = ttk.Style()
s.configure('TNotebook', tabposition='nw')

themes discussed and described: https://tkdocs.com/tutorial/styles.html
to see a full list of available themes: print(s.theme_names())
s.theme_use('clam')

When we rerun the updated application, we can immediately see the new icon:

Our title has been updated, and now our tabs now look "more rectangular", too:

6. ADDING A MENUBAR, HANDLING CALLBACKS AND DOING A LITTLE INITIAL TESTING

You may wonder how you can interact with that application. Currently you can click on one of the tabs (to

select that tab), or you can click on one of the operating system menu bar "balls" in the upper left corner of

the window (to kill, iconify, or go full screen mode). That's about it.

We need a way to enter a FQDN and then submit it. Let's also explictly add a way to "clear" (or "reset") things,

and a way to quit the application. We'll do that with a small menubar. Let's assume it's going to be part of the

first tab, t1, in our notebook:

mymenubarbox = ttk.Frame(t1)
mymenubarbox.pack(side=TOP, anchor=NW)

mymenubarlabel = ttk.Label(mymenubarbox, text=" Enter FQDN:")
mymenubarlabel.pack(side=LEFT)

FQDN = ttk.Entry(mymenubarbox)
FQDN.pack(side=LEFT)

buttona = tk.Button(mymenubarbox, text='Submit', command = funca)
buttona.pack(side=LEFT)

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

12

root.bind('<Return>', funca)

buttonb = tk.Button(mymenubarbox, text='Clear', command = funcb)
buttonb.pack(side=LEFT)

buttonc = tk.Button(mymenubarbox, text='Quit', command = funcc)
buttonc.pack(side=LEFT)

mymenubarbox.pack(side=TOP, anchor=NW)

By packing "side=LEFT", we'll get a horizontal menubar. We'll insert the new code shown above in our sample

file just after the "t3 = tk.Frame" line.

Notice those three buttons refer to three commands (funca, funcb, and funcc). We'll also need to define those

callbacks, so the application knows what to do when one of those buttons gets pressed. We'll add those

callback functions to the main program, after the import statements, but before the bulk of our main program.

For now, we'll keep those callback functions quite simple:

def funca(event=None):
 fqdn = FQDN.get()
 print ("In funca, fqdn="+fqdn)

def funcb(event=None):
 print ("In funcb")
 FQDN.delete(0, 'end')

def funcc(event=None):
 sys.exit()

When we run our code now, it looks like:

You'll notice that the window has automatically resized, becoming wider to accommodate the width of the

menubar. If we enter a domain name and try pressing "Submit," things don't work quite the way we expected:

$./test-notebook.py
In funca, fqdn=

In this case, funca doesn't seem to be able to "see" fqdn. In retrospect, that should not be surprising since

fqdn is a locally-scoped variable by default. If we want the contents of that variable to be available to

subroutines, we need to either pass that variable as an explicit parameter (and then explicitly return any

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

13

changed values), or we need to define those variables as global. Because this code isn't very long or complex,

we elect to do the later. We add the statement:

global FQDN, fqdn, t2, t3

We also add a copy of that global statement in the subroutines that need to be able to see AND MODIFY that

variable. Our code now looks like:

#!/usr/local/bin/python3

import asyncio
import sys

from tkinter import *
import tkinter as tk
import tkinter.ttk as ttk

global FQDN, fqdn, t2, t3

def funca(event=None):
 global FQDN, fqdn
 fqdn = FQDN.get()
 print ("In funca, fqdn="+fqdn)

def funcb(event=None):
 global FQDN
 print ("In funcb")
 FQDN.delete(0, 'end')

def funcc(event=None):
 sys.exit()

root = tk.Tk()
root.title("bang_question")
root.tk.call('wm','iconphoto',root._w,PhotoImage(file='exclamationquestion.gif'))

s = ttk.Style()
s.configure('TNotebook', tabposition='nw')
to see a full list of potential themes: print(s.theme_names())
s.theme_use('clam')

mywindow = tk.Frame(root)
mynotebook = ttk.Notebook(mywindow)

colors: www.science.smith.edu/dftwiki/index.php/Color_Charts_for_TKinter
t1 = tk.Frame(height=200,width=200,background='light goldenrod')
t2 = tk.Frame(height=200, width=200,background='PaleTurquoise1')
t3 = tk.Frame(height=200, width=200,background='plum2')

mymenubarbox = ttk.Frame(t1)
mymenubarbox.pack(side=TOP, anchor=NW)

mymenubarlabel = ttk.Label(mymenubarbox, text=" Enter FQDN:")
mymenubarlabel.pack(side=LEFT)

FQDN = ttk.Entry(mymenubarbox)
FQDN.pack(side=LEFT)

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

14

buttona = tk.Button(mymenubarbox, text='Submit', command = funca)
buttona.pack(side=LEFT)
root.bind('<Return>', funca)

buttonb = tk.Button(mymenubarbox, text='Clear', command = funcb)
buttonb.pack(side=LEFT)

buttonc = tk.Button(mymenubarbox, text='Quit', command = funcc)
buttonc.pack(side=LEFT)

mymenubarbox.pack(side=TOP, anchor=NW)

mynotebook.add(t1, text='Tab #1')

mynotebook.add(t2, text='Tab #2')
mynotebook.add(t3, text='Tab #3')

mynotebook.pack(expand=True, side=TOP, anchor=NW)
mywindow.pack(side=TOP, anchor=NW)
mywindow.mainloop()

When we try running the code again, entering www.uoregon.edu into our new FQDN box, and then hitting

Submit, things now work as expected. Moving on to try the Clear button, we see the FQDN box go blank and

"In funcb" gets printed out, also as expected. Finally, clicking Quit also works, shutting down the application.

So far everything is as expected.

7. ADDING A LOG AREA FOR INFORMATIONAL NOTES

As the program runs, it should keep the user informed about what's happening. We'll handle that by adding a

text area "log box" beneath our menubar on tab t1. Doing that only requires a few lines of code. We'll add the

required lines immediately below the "mymenubarbox.pack(side=TOP, anchor=NW)" line:

my_log_box = tk.Text(t1,height=40,width=132)
my_log_box.pack(side=TOP, anchor=NW)

We also need to declare that widget as global:

global my_log_box

When we want to add an entry to that box, we'll use commands like:

my_log_box.insert(tk.END, "Here's a note to add to the log box.\n")
my_log_box.update()

The reference to "tk.END" ensures we write to the end of any existing text in the log box.

The "my_log_box.update()" command ensures that the log entry gets displayed immediately (it might

otherwise end up buffered and not get displayed for some time).

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

15

8. SNAGGING A COPY OF A WEBPAGE (IN GENERAL)

Let's now work on our first "substantive" content, capturing (and then displaying) an image of a web page in

our application. Scraping and saving a copy of a webpage can be an important part of an investigation. Why?

Well, what you see the first time you visit a page may not be what you see when you revisit that same site

later. Therefore, it is (or it should be!) a "best practice" to capture what you run into on a web page for

potential "evidentiary" purposes.5 If you were working manually, you might visit a site with your web browser

and then manually take screen shots of what you see. When automating that process, you'll typically use a so-

called "headless browser." The first question to deal with is, "WHICH headless browser should I use?" Three

commonly mentioned options are (1) PhantomJS, (2) Selenium and (3) Pyppeteer.

(1) Upon review, we ruled out using PhantomJS since the project team suspended further project

development in March of 2018.6

(2) Selenium7 is another commonly mentioned option, but in our testing, Selenium had two main drawbacks:

• In Selenium, it can be hard to tell when a page has "finished loading" and is "ready to be captured." This is

normally "worked-around" on an "emprical/ad-hoc basis" by adding "delay time." Getting that time right

can be tricky, particularly if diverse categories of pages are being captured. The issue is easy to explain:

o Set it too short? A slow-to-transfer-and-render page may not be "fully settled" when you try

capturing a copy of that page as an image.

o Set it too long? Users may feel as if your application is "slow" (when it fact you're just being careful

to let the target web page completely finish loading).

• If you want to get an ENTIRE web page, particularly a long/tall web page that extends beyond what might

be visible in a single fixed-sized "viewport", Selenium typically requires stitching together multiple

viewport-sized screen captures, viewportful-at-a-time. That can be tedious/inconvenient. You can find a

variety of solutions for attempting this if you search the web for

selenium full page screenshot +python

(3) Our third option's Pyppeteer,8 the Python implementation of Puppeteer.

5 We use the term "evidentiary" here very loosely. In reality, if you're collecting screen captures for use in

criminal prosecutions or civil lawsuits, consideration probably needs to be given to things like logging and

timestamping the captures, hashing the capture to prove an absence of tampering, documenting the URL

visited, documenting the chain of custody around the captures, etc., etc., etc. These are all potentially quite

subtle issues that are out-of-scope for a simple proof of concept application like this one. This is NOT a

litigation support application!
6 https://phantomjs.org/
7 https://www.selenium.dev/
8 See https://github.com/pyppeteer/pyppeteer and https://pypi.org/project/pyppeteer/

Note https://github.com/pyppeteer/pyppeteer/projects mentions migrating to the "pyppeteer2 namespace",

see https://pypi.org/project/pyppeteer2/

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

16

Given the issues with PhantomJS and Selenium, we decided we'd rely on Pyppeteer for our screen capture

requirements. We're not the only one who's been impressed by it. For example, one reviewer stated:9

"The Google Chrome team made waves last year when it released Puppeteer, a NodeJS API for running

headless Chrome instances. It represents a marked improvement both in terms of speed and stability

over existing solutions like PhantomJS and Selenium, and was named one of the ten best web scraping

tools of 2018."

Our first Pyppeteer hands-on "evaluation task" was using Pyppeteer to check to see if modern web pages

actually ARE long. Perhaps modern web designers are carefully-crafting pages to no more than a minimalist

800 x 600 pixel format? and thus there's no need to worry about scraping long/tall web pages?

For example, what do we see if we look at the home pages of colleges and universities? How tall do they tend

to be? We checked 96 colleges/universities using Pyppeteer. ALL of those sites had long/tall pages when we

visited them with Pyppeteer set to a target page width of 800 pixels and a default user agent. We did NOT

check for sites with "responsive designs," e.g., sites that change their layout depending on whether a visitor is

apparently coming from a large desktop workstation, a laptop computer, a tablet or a phone.

See Appendix V for a full list of the sites we checked and the home page dimensions we observed for those

sites. Some of the things we learned included:

• While all of the screen captures were meant to be normalized to a common width of 800 pixels, some sites

were apparently fixed width (or somehow otherwise ended up being captured at a width wider than 800

pixels.) This was unexpected.

• The days of having a home page that fits on a single screen (and which doesn't routinely require vertical

scrolling to use) appear to be over. If you were to just capture a fixed image footprint by default, you might

miss 90% of some home pages! (We also can't help but wonder -- do most visitors actually scroll down on

those sort of sites? Or does everything "below the fold" simply get overlooked by visitors "clicking

through"? Put another way, how "long/tall" is TOO "long/tall"?)

• 18 out of 96 total sites (~19%) failed to capture successfully when we attempted to scrape them with

Pyppeteer. Breaking that down:

o 13/18 appear to use a page design that includes technology (perhaps a video or animation?) that

interferes with getting a clean capture of the page. We tried disabling animations with

 await page._client.send('Animation.disable')

but that doesn't appear to have any effect -- some animations still seemed to run. This issue appears

to be a known/open Puppeteer bug.10 We might be able to spend some time tweaking Pyppetter to

cleanly capture those, but since this is just a proof-of-concept application, we're not going to bother.

9 https://hackernoon.com/tips-and-tricks-for-web-scraping-with-puppeteer-ed391a63d952
10 https://github.com/puppeteer/puppeteer/issues/511

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

17

o 2/18 sites "capture" as a totally blank (white) page for as-yet-undetermined reasons -- maybe an issue

with transparency?

o 1/18 sites had a problem with a fundraising-related overlay obfuscating the underlying page. Manual

visitors to that site would just click through the overlay to close it, but our automated scraping just

ended up capturing a copy of the obscuring overlay instead of the underlying page, very irritating.

o 1/18 totally failed to successfully scrape due to the presence of a redirection loop. We can replicate the

looping issue if we attempt to visit the site using the curl command line client with the "-L" ("follow

redirects") option active:

$ curl -L https://www.osu.edu/
curl: (47) Maximum (50) redirects followed

Using curl without the -L ("follow redirects") option, we can see that the site appears (for some reason)

to be trying to redirect "from itself" "to itself", an obvious recipe for failure:

$ curl https://www.osu.edu/
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<html><head>
<title>301 Moved Permanently</title>
</head><body>
<h1>Moved Permanently</h1>
<p>The document has moved here.</p>
</body></html>

• At least 1/96 sites didn't fail, but only because we'd intentionally disabled SSL/TLS certificate checking.

That site, https://www.oregonstate.edu/ , used and uses a cert that doesn't include www.oregonstate.edu

as a certificate Subject Alternative Name. Again, we can use curl at the command line to observe this:

$ curl https://www.oregonstate.edu/
curl: (60) SSL: no alternative certificate subject name matches target host name
'www.oregonstate.edu'
More details here: https://curl.haxx.se/docs/sslcerts.html

• In general, we might expect that criminal or malicious sites (unlike the regular college and university web

sites we tested) won't necessarily "play nice" when it comes to facilitating screen captures. For example,

we believe some criminal or malicious sites may intentionally use/attempt to use a variety of techniques to

frustrate automated screen captures. This may include intentionally incorporating animation, using

overlays, using Captchas, sniffing browser agents, etc. Thus, capturing a copy of a site with Pyppeteer will

OFTEN work, but SHOULDN'T be counted on to ALWAYS work. Please promptly review any screen

captures you perform to ensure that they'll meet your needs (and so you can manually recapture them if

that's necessary).

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

18

9. USING PYPPETEER TO CAPTURE SCREEN SHOTS

In order to be able to use Pyppeteer, we'll need to install it. We'll install it (and other subsequent third-party

libraries) using pip3:11

/usr/local/bin/pip3 install pyppeteer

We'll also need to do a one-time install of Chromium. Pyppeteer provides a convenience function for this:

$ pyppeteer-install

We're then ready to incorporate Pyppeteer into our application.

The actual code we need to scrape the page amounts to only a few lines, a couple of imports:

import asyncio
from pyppeteer import launch

and then:

browser = await launch({'headless': True, 'ignoreHTTPSErrors': True,\
 'defaultViewport': None, 'viewport_width': 800})
context = await browser.createIncognitoBrowserContext()
page = await browser.newPage()
await page._client.send('Animation.disable')
await page.goto(url)
await page.screenshot({'path': myfilespec, 'type': 'jpeg', \
 'quality': 80, 'fullPage': True})
await browser.close()

Before running that code, there are a few other things we should mention:

• We need to make sure the site we want to go to actually exists and is reachable on either port 443 (https)

or port 80 (http). We'll check the https port first, then fall back to plain old standard http if we have to.

If neither work, we'll pop up an error message since this is usually a sign of a typo or other operator error.

This is the code that will handle that check and which will potentially trigger that popup:

 # verify page exists, and figure out if https is supported
 try:
 # note: you do NOT need to explicitly permit inbound traffic on macOS!
 myaddrinfo = socket.getaddrinfo(fqdn, 443)
 url = "https://"+fqdn
 domain_resolves_ok = True
 except socket.gaierror:
 # couldn't connect on default SSL/TLS port; fall back to regular http
 try:
 myaddrinfo = socket.getaddrinfo(fqdn, 80)
 url = "http://"+fqdn
 domain_resolves_ok = True

11 https://docs.python.org/3/installing/index.html

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

19

 except:
 # couldn't even connect on standard port
 display_error()
 return(1)

Here's the display_error error notification routine:

def display_error():
 showerror(message=\
 "Couldn't get FQDN.\nTypo in the FQDN entered?",
 title="Message Box", icon="error")

When executed, it will pop up a new window:

As noted in the comments in the code, if you're running this code on macOS, you may at least temporarily

see a system prompt asking if you want to allow inbound traffic. You do NOT need to grant this permission

for the application to work.

Since we want to snag a copy of the capture, we'll also need to confirm the existence of the directory

where we're going to stash those captures. If the directory doesn't exist, we'll need to create it. We also

confirm that the screen capture file can be successfully created:

 import asyncio
 import datetime
 import errno
 import os
 from pathlib import Path
 import socket
 [...]

 home = str(Path.home())
 subdir = "snapshots"
 myfilename = fqdn
 utcdatetime = datetime.datetime.utcnow().isoformat() + 'Z'
 myextension = "jpeg"
 mydir = home + "/" + subdir
 fullfilenamepart = fqdn + "_" + utcdatetime + "." + myextension
 latestversion = fqdn + "_" + "latest" + "." + myextension
 [...]

 # ensure the directory exists
 try:
 os.makedirs(mydir)

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

20

 except OSError as e:
 if e.errno != errno.EEXIST:
 raise

 # ensure the timestamped file exists
 myfilespec = mydir + "/" + fullfilenamepart
 try:
 open(myfilespec, 'a').close()
 except:
 raise

• In addition to checking/creating the capture file directory and filename, we're also going to create a

"_latest" "convenience link" for each site to simplify referring to the most recent capture for that site:

 # ensure the "latest" version is updated for this URL
 mylatest = mydir + "/" + latestversion

 try:
 os.unlink(mylatest)
 except:
 pass
 os.symlink(myfilespec, mylatest)

• In Finder on macOS boxes, the captured file and its link gets displayed with slashes in place of colons.

(The original filenames still show up if you check the file in Terminal)

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

21

• Looking at the scraped page capture in the macOS Preview.app, we see:

Those pages actually are all 800 pixels wide, but they appear tiny in that window because the image as a

whole is actually 11,461 pixels in height. That extreme height means the image needs to be dynamically

scaled in order to cram the whole thing into the small Preview window.

Clearly we'll need a scrollable display window in our application! The problem? Tkinter graphic windows

are NOT scrollable. We'll explain how we'll deal with that process in the next section. Before going on to

that section, a few additional notes about the screen grab process with Pyppeteer:

• While constructing our path, we're just concatenating the various parts of the filespec together with fixed

Un*x-style file formatting. If we were prioritizing portability for our application, we'd probably use

os.path.join() (instead of just concatenating elements) in order to get OS-aware path semantics, etc.

• In testing the sites we tried to screenshot, we only check port 443 and port 80. In some cases, sites may

intentionally use non-standard ports (e.g., ports other than 443 and 80). We don't accommodate non-

standard ports, nor URLs that include subdirectories. In a production application, rather than just a proof-

of-concept application, those would be natural features to support.

• While grabbing sites, we make not attempt to "be sneaky." That is, we don't actively try to "look like"/"act

like" a routine user on a run-of-the-mill web browser, nor do we route our connections through a proxy.

It is thus entirely possible that our visit may be detectable by a defensively-alert webmaster/site admin.

If that happens, the IP address you're working from may be discovered by the bad guys/bad gals.

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

22

10. DISPLAYING A SCROLLABLE JPEG IN TKINTER

Once we've captured our image with Pyppeteer, we still need to display it in Tkinter. Two issues are

potentially relevant:

• Mind bogglingly, Tkinter doesn't natively handle some common image formats (such as JPEG). Using the

Python Imaging Library (Pillow) is the standard solution to overcoming this limitation.

• Tkinter also doesn't automatically handle scrolling if an image is oversize. We'll use a solution provided in

https://stackoverflow.com/questions/56043767/show-large-image-using-scrollbar-in-python/56043976

to overcome this deficiency.

The resulting output (for www.uoregon.edu) in Tab #2 looks like:

Note the scrollbar -- we can go through the full page by using the scrollbar to the right of the image, or by

using two fingers on the Mac touchpad to do "mouse wheel" scrolling.

To see the code for all this, look at paragraph 12.

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

23

11. FILLING IN PASSIVE DNS RRNAME DATA ON OUR THIRD SAMPLE TAB

We'll now create a function in a separate file to grab DNSDB12 RRname ("left hand side") data. We'll put that

data into a scrollable text window for our third sample tab. Assumptions:

• There's a valid DNSDB API key in .dnsdb-apikey.txt in our home directory (note the leading dot!).

• You're fine using the public DNSDB server at api.dnsdb.info (rather than a local export installation).

• You only want/need the RRname, RRtype, time last seen, time first seen, and Rdata.

• You want to sort the results by time last seen (in descending order, e.g., most recent first).

• We don't care about (and don't want to be bothered with viewing) SOA records

We'll use pycurl13 to actually retrieve the data from the DNSDB API endpoint. The actual code for this can be

seen in paragraph 12.

The output for Tab #3 now looks like:

12 https://docs.dnsdb.info/
13 http://pycurl.io/

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

24

12. A QUICK CHECKPOINT BEFORE WE GO ON...

You've now seen an example of how we can create a little sample app with three tabs -- one main tab with a

menubar and log window, a second tab with a scraped copy of a web page we're interested in, and a third tab

with some DNSDB RRname results. The full code for this example looks like the following three files runs about

six pages all-in-all:

$ cat test-notebook-2.py
#!/usr/local/bin/python3

import asyncio
import sys

from tkinter import *
import tkinter as tk
import tkinter.ttk as ttk

import PIL
from PIL import ImageTk, Image, ImageDraw, ImageFont

from scrapePage import scrapeAFQDN ### tab 2
from dnsdbRun import doRRnameQuery ### tab 3

global FQDN, fqdn, t2, t3

class ScrollableImage(tk.Frame):
 def __init__(self, master=None, **kw):
 self.image = kw.pop('image', None)
 sw = kw.pop('scrollbarwidth', 10)
 super(ScrollableImage, self).__init__(master=master, **kw)
 self.cnvs = tk.Canvas(self, highlightthickness=0, **kw)
 self.cnvs.create_image(0, 0, anchor='nw', image=self.image)
 # Vertical and Horizontal scrollbars
 self.v_scroll = tk.Scrollbar(self, orient='vertical', width=sw)
 self.h_scroll = tk.Scrollbar(self, orient='horizontal', width=sw)
 # Grid and configure weight.
 self.cnvs.grid(row=0, column=0, sticky='nsew')
 self.h_scroll.grid(row=1, column=0, sticky='ew')
 self.v_scroll.grid(row=0, column=1, sticky='ns')
 self.rowconfigure(0, weight=1)
 self.columnconfigure(0, weight=1)
 # Set the scrollbars to the canvas
 self.cnvs.config(xscrollcommand=self.h_scroll.set,
 yscrollcommand=self.v_scroll.set)
 # Set canvas view to the scrollbars
 self.v_scroll.config(command=self.cnvs.yview)
 self.h_scroll.config(command=self.cnvs.xview)
 # Assign the region to be scrolled
 self.cnvs.config(scrollregion=self.cnvs.bbox('all'))
 self.cnvs.bind_class(self.cnvs, "<MouseWheel>", self.mouse_scroll)

 def mouse_scroll(self, evt):
 if evt.state == 0 :
 self.cnvs.yview_scroll(-1*(evt.delta), 'units') # For MacOS
 self.cnvs.yview_scroll(int(-1*(evt.delta/120)), 'units') # For windows
 if evt.state == 1:
 self.cnvs.xview_scroll(-1*(evt.delta), 'units') # For MacOS

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

25

 self.cnvs.xview_scroll(int(-1*(evt.delta/120)), 'units') # For windows
def funca(event=None):
 global FQDN, fqdn, t2, t3
 fqdn = FQDN.get()
 print ("In funca, fqdn="+fqdn)

 mypage = asyncio.get_event_loop().run_until_complete\
 (scrapeAFQDN(fqdn, my_log_box))

 img2 = ImageTk.PhotoImage(Image.open(mypage))
 image_window = ScrollableImage(t2, image=img2,
 width=800, height=600)
 image_window.pack(anchor=NW)
 image_window.update()

 my_fqdn_results_json = doRRnameQuery(fqdn)

 # Text Widget height and width are in characters
 mytext_widget_pdns = tk.Text(t3,height=40,width=132)
 mytext_widget_pdns.pack(side=TOP, anchor=NW)
 mytext_widget_pdns.update()

 mytext_widget_pdns.insert(tk.END, my_fqdn_results_json)

def funcb(event=None):
 global FQDN
 print ("In funcb")
 FQDN.delete(0, 'end')

def funcc(event=None):
 sys.exit()

root = tk.Tk()
root.title("bang_question")
root.tk.call('wm','iconphoto',root._w,PhotoImage(file='exclamationquestion.gif'))

s = ttk.Style()
s.configure('TNotebook', tabposition='nw')
to see a full list of potential themes: print(s.theme_names())
s.theme_use('clam')

mywindow = tk.Frame(root)
mynotebook = ttk.Notebook(mywindow)

colors: www.science.smith.edu/dftwiki/index.php/Color_Charts_for_TKinter
t1 = tk.Frame(height=200,width=200,background='light goldenrod')
t2 = tk.Frame(height=200, width=200,background='PaleTurquoise1')
t3 = tk.Frame(height=200, width=200,background='plum2')

mymenubarbox = ttk.Frame(t1)
mymenubarbox.pack(side=TOP, anchor=NW)

mymenubarlabel = ttk.Label(mymenubarbox, text=" Enter FQDN:")
mymenubarlabel.pack(side=LEFT)

FQDN = ttk.Entry(mymenubarbox)
FQDN.pack(side=LEFT)

buttona = tk.Button(mymenubarbox, text='Submit', command = funca)

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

26

buttona.pack(side=LEFT)
root.bind('<Return>', funca)

buttonb = tk.Button(mymenubarbox, text='Clear', command = funcb)
buttonb.pack(side=LEFT)

buttonc = tk.Button(mymenubarbox, text='Quit', command = funcc)
buttonc.pack(side=LEFT)

mymenubarbox.pack(side=TOP, anchor=NW)
global my_log_box
my_log_box = tk.Text(t1,height=40,width=132)
my_log_box.pack(side=TOP, anchor=NW)

mynotebook.add(t1, text='Tab #1')
mynotebook.add(t2, text='Tab #2')
mynotebook.add(t3, text='Tab #3')

mynotebook.pack(expand=True, side=TOP, anchor=NW)
mywindow.pack(side=TOP, anchor=NW)

my_log_box.insert(tk.END, "Ready to run...\n")
my_log_box.update()

mywindow.mainloop()

$ cat scrapePage.py
#!/usr/local/bin/python3

import asyncio
import datetime
import errno
import os
from pathlib import Path
import socket

https://pypi.org/project/pyppeteer2/
https://miyakogi.github.io/pyppeteer/reference.html
One time, download Chromium: $ pyppeteer-install
from pyppeteer import *

import tkinter as tk
from tkinter.messagebox import *

def display_error():
 showerror(message=\
 "Couldn't get FQDN.\nTypo in the FQDN entered?",
 title="Message Box", icon="error")

async def scrapeAFQDN(fqdn, my_log_box):
 # the snapshot goes to this filespec
 # if on something non-Un*x-ish, remember os.path.join(dir, f)
 my_log_box.insert(tk.END, "Making sure archive directory exists...\n")
 my_log_box.update()
 home = str(Path.home())
 subdir = "snapshots"
 myfilename = fqdn
 utcdatetime = datetime.datetime.utcnow().isoformat() + 'Z'
 myextension = "jpeg"

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

27

 mydir = home + "/" + subdir
 fullfilenamepart = fqdn + "_" + utcdatetime + "." + myextension
 latestversion = fqdn + "_" + "latest" + "." + myextension
 # ensure the directory exists
 try:
 os.makedirs(mydir)
 except OSError as e:
 if e.errno != errno.EEXIST:
 raise

 # ensure the timestamped file exists
 myfilespec = mydir + "/" + fullfilenamepart
 try:
 open(myfilespec, 'a').close()
 except:
 raise

 my_log_box.insert(tk.END, "Confirming page is reachable on 443 or 80...\n")
 my_log_box.update()

 # verify page exists, and figure out if https is supported
 try:
 # note: you do NOT need to explicitly permit inbound traffic on macOS!
 myaddrinfo = socket.getaddrinfo(fqdn, 443)
 url = "https://"+fqdn
 domain_resolves_ok = True
 except socket.gaierror:
 # couldn't connect on default SSL/TLS port; fall back to regular http
 try:
 myaddrinfo = socket.getaddrinfo(fqdn, 80)
 url = "http://"+fqdn
 domain_resolves_ok = True
 except:
 # couldn't even connect on standard port
 display_error()
 return(1)

 if domain_resolves_ok == True:
 browser = await launch({'headless': True, 'ignoreHTTPSErrors': True,\
 'defaultViewport': None, 'viewport_width': 800})
 context = await browser.createIncognitoBrowserContext()
 page = await browser.newPage()
 await page._client.send('Animation.disable')
 await page.goto(url)
 await page.screenshot({'path': myfilespec, 'type': 'jpeg', \
 'quality': 80, 'fullPage': True})
 await browser.close()
 # should we get and save cookies from the page, too?

 # ensure the "latest" version is updated for this URL
 mylatest = mydir + "/" + latestversion
 # print("mylatest =" + mylatest)

 try:
 os.unlink(mylatest)
 except:
 pass
 os.symlink(myfilespec, mylatest)

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

28

 return(myfilespec)

 $ cat dnsdbRun.py

#!/usr/local/bin/python3
from tkinter import *
from tkinter import scrolledtext
from pathlib import Path
from io import BytesIO
import pycurl
import json
from time import strftime, gmtime

See stackoverflow.com/questions/26924812/python-sort-list-of-json-by-value
def extract_time(myrecord):
 json_format=eval(myrecord)

 try:
 extracted_bit = json_format['obj']['time_last']
 except:
 extracted_bit = json_format['obj']['zone_time_last']

 return extracted_bit

def doRRnameQuery(fqdn):
 content = make_query(fqdn)

 try:
 test = int(content)
 print("Error making dnsdb query! Return code = "+str(test))
 sys.exit(0)
 except:
 sList = list(line for line in content.strip().split("\n"))

 # we want to dump the first line in that output
 # print ("sList[0]="+sList[0])
 if sList[0] == '{"cond":"begin"}':
 sList.pop(0)
 else:
 print("SOMETHING ODD HAPPENED POPPING THE FIRST ELEMENT")

 # print ("sList[-1]="+sList[-1])
 if ((sList[-1] == '{"cond":"succeeded"}') or
 (sList[-1] == '{"cond":"limited","msg":"Result limit reached"}')):
 sList.pop()
 else:
 print("SOMETHING ODD HAPPENED POPPING THE LAST ELEMENT")

 sList2 = sorted(sList, key=extract_time, reverse=True)

 formatted_output=""
 results=""
 for line in sList2:
 results=print_bits(line)
 if results != "":
 result_with_nl=results+"\n"
 formatted_output=formatted_output+result_with_nl

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

29

 if len(formatted_output) == 0:
 formatted_output = "No results found\n"

 return(formatted_output)

def make_query(fqdn):
 # get the DNSDB API key
 filepath = str(Path.home()) + "/.dnsdb-apikey.txt"
 with open(filepath) as stream:
 myapikey = stream.read().rstrip()

 url = "https://api.dnsdb.info/dnsdb/v2/lookup/rrset/name/" + fqdn

 requestHeader = []
 requestHeader.append('X-API-Key: ' + myapikey)
 requestHeader.append('Accept: application/jsonl')

 buffer = BytesIO()
 c = pycurl.Curl()
 c.setopt(pycurl.URL, url)
 c.setopt(pycurl.HTTPHEADER, requestHeader)
 c.setopt(pycurl.WRITEDATA, buffer)
 c.perform()
 rc = c.getinfo(c.RESPONSE_CODE)
 body = buffer.getvalue()
 content = body.decode('iso-8859-1')

 if rc == 200:
 return content
 else:
 return rc

def print_bits(myrecord):
 myformat = '%Y-%m-%d %H:%M:%S'
 myrecord_json_format = json.loads(myrecord)
 extract_bit = myrecord_json_format['obj']['rrname']

 extract_bit_2 = myrecord_json_format['obj']['rrtype']
 extract_bit_2 = str('{0:<5}'.format(extract_bit_2))

 temp_bit_3 = myrecord_json_format['obj']['rdata']
 extract_bit_3 = json.dumps(temp_bit_3)

 try:
 extract_tl = myrecord_json_format['obj']['time_last']
 except:
 extract_tl = myrecord_json_format['obj']['zone_time_last']

 tl_datetime = gmtime(extract_tl)
 enddatetime = strftime(myformat, tl_datetime)

 try:
 extract_tf = myrecord_json_format['obj']['time_first']
 except:
 extract_tf = myrecord_json_format['obj']['zone_time_first']

 tf_datetime = gmtime(extract_tf)
 startdatetime = strftime(myformat, tf_datetime)

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

30

 extract_count = myrecord_json_format['obj']['count']
 formatted_count = str('{:>11,d}'.format(extract_count))
 results = extract_bit + " " + extract_bit_2 + " \"" + enddatetime + \
 "\" \"" + startdatetime + "\" " + formatted_count + \
 " " + extract_bit_3

 if (results.find("SOA") == -1):
 return results
 else:
 return ""

That's it for our little "colorful" test application.

What haven't we done yet? Well, obviously, there are still seven more tabs we still need to handle:

1. A DNSDB Rdata Search for FQDN --> IP

2. A check of the Domain WHOIS for the FQDN

3. A check of the IP WHOIS for the IP the FQDN is currently using

4. A check of the ASN WHOIS for ASN announcing the IP that the FQDN is currently using

5. A list of the prefixes associated with that ASN

6. A map showing the location associated with the IP address the FQDN is currently using

7. A network graph showing the DNSDB RRname search results

We'll get those remaining tabs out of the way in Part II.

We also need to deal with handling multiple sequential runs. If you currently try making multiple runs within

the static three tab app we just fleshed out, you'll see that there's a "slight" problem: the content from the

previous run doesn't get replaced by the content from the next run. The content from the 2nd, 3rd, ... Nth

runs just gets added below the existing content.

For example, consider tab #2 output from a run for www.uoregon.edu followed by a run for

www.washington.edu as shown on the next page:

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

31

That's NOT what we intuitively expected or wanted! We would have expected the University of Washington

content to OVERWRITE the University of Oregon content, not just be appended below it.

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

32

Similarly, looking at tab #3, we see:

Again, having the new content appended to the bottom of the screen, BELOW the existing content, is not what

we want.

In the next part, we'll recode the application so that the old content get destroyed before new content gets

added to the notebook tabs.

Oh yes: our Clear button should also zap that content (unfortunately all it does currently is clear the domain

name entry box).

We'll get all this fixed up in part II.

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

33

PART II.

FULL PROOF-OF-CONCEPT APP

WITH DYNAMIC TABS

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

34

13. TAB MANAGEMENT AND HANDLING MULTIPLE RUNS

We begin our rebuild by dealing with our erroneous "appending" (rather than "overwriting") of tab content.

We'll also deal with our failure to properly clear old content from the tabs when the Clear button is pressed.

Conceptually, our main tab, tab #1, is the only tab we need to initially create (we need to automatically create

it so we can enter the domain name of interest and get status reports on what's being done on our behalf).

This means that our widget creation code (excluding imports, global statements, etc.) in the main routine

now looks like:

root = tk.Tk()
root.title("bang_question")
iconfilespec = str(Path.home()) + "/.bang_question_files/" + \
 "exclamationquestion.gif"
root.tk.call('wm','iconphoto',root._w,ImageTk.PhotoImage(file=iconfilespec))
s = ttk.Style()
s.configure('TNotebook', tabposition='nw')
s.theme_use('clam')
root.bind('<Return>', funca)
mywindow = tk.Frame(root)

create notebook
mynotebook = ttk.Notebook(mywindow)
mynotebook.pack(side=TOP, anchor=NW)

t1 = tk.Frame()
mynotebook.add(t1, text="MAIN")

build menu box
mymenubarbox = ttk.Frame(t1)
mymenubarbox.pack(side=TOP, anchor=NW)
mymenubarlabel = ttk.Label(mymenubarbox, text=" Enter FQDN:")
mymenubarlabel.pack(side=LEFT)
FQDN = ttk.Entry(mymenubarbox)
FQDN.pack(side=LEFT)
buttona = tk.Button(mymenubarbox, text='Submit', command = funca)
buttona.pack(side=LEFT)
buttonb = tk.Button(mymenubarbox, text='Clear', command = funcb)
buttonb.pack(side=LEFT)
buttonc = tk.Button(mymenubarbox, text='Quit', command = funcc)
buttonc.pack(side=LEFT)
mymenubarbox.pack(side=TOP, anchor=NW)

build log box
my_log_box = tk.Text(t1,height=40,width=132)
my_log_box.pack(side=TOP, anchor=NW)

add tab #1 to notebook
mynotebook.add(t1, text="MAIN")
mynotebook.pack(side=TOP, anchor=NW, expand=True)

mywindow.pack(side=TOP, anchor=NW)
mywindow.mainloop()

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

35

The rest of the tabs (tabs 2 through 10) we'll create in funca (the callback for the "Submit" button). That

function is our largest chunk of code. Let's now look at the "guts" of funca, excluding logging statements,

global statements, etc.

--

Starting with tab #1 (our "main" tab), we're clearing the log box, and we're picking up the FQDN to analyze:

 my_log_box.delete('1.0', END)
 fqdn = FQDN.get()

After a FQDN is entered and our completed program runs, that tab will look like:

--

In tab #2 (our "Screen Grab" tab), we'll begin by doing the screen grab we want to display:

 mypage = asyncio.get_event_loop().run_until_complete\
 (scrapeAFQDN(fqdn, my_log_box))

We'll then try to destroy the t2 tab (if a t2 tab already exists):

 try:
 t2.destroy()
 except:

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

36

 pass

Then we'll (re)-create the frame, add it to our notebook, populate it with our image, pack the widget, and

ensure it gets promptly displayed by calling update:

 t2 = tk.Frame()
 mynotebook.add(t2, text="Screen Grab")
 img2 = ImageTk.PhotoImage(Image.open(mypage))
 image_window = ScrollableImage(t2, image=img2,
 width=800, height=600)
 image_window.pack(anchor=NW)
 image_window.update()

When that code runs, that tab will look like:

--

In tab #3 (our "DNSDB RRnames" tab), we'll do the first of three DNSDB queries. We consolidated all the

DNSDB query types into a single integrated "doQuery" function, and depending on the 2nd argument passed

to that function, one of three query types will be run:

• "full" ==> RRname query with output of RRname, RRtype, TimeFirst, TimeLast, Rdata and Count

• "limited" ==> RRname query with just output of RRname, RRtype and Rdata (this is for graphing)

• "RdataIP" ==> Rdata IP address query

For the purposes of tab #3, we want to do a "full" RRname query:

 my_fqdn_results_json = doQuery(fqdn, "full")

We then add the results to the tab:

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

37

 try:
 t3.destroy()
 except:
 pass

 t3 = tk.Frame()
 mynotebook.add(t3, text="DNSDB RRnames")

 # Text Widget height and width are in characters
 mytext_widget_pdns = tk.Text(t3,height=40,width=132)
 mytext_widget_pdns.pack(side=TOP, anchor=NW)
 mytext_widget_pdns.update()

We'll handle the other seven tabs the same way. When run, this third tab will look like:

--

For example, tab #4 (our "DNSDB RdataIP" tab) is quite similar, except we pass myip (instead of fqdn) and tag

this as an "RdataIP" query:

 myip = socket.gethostbyname(fqdn)
 my_ip_results_json = doQuery(myip, "RdataIP")

 try:
 t4.destroy()
 except:
 pass

 t4 = tk.Frame()
 mynotebook.add(t4, text="DNSDB IP Rdata")

 # Text Widget height and width are in characters
 mytext_widget_pdns_2 = tk.Text(t4,height=40,width=132)
 mytext_widget_pdns_2.pack(side=TOP, anchor=NW)

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

38

 mytext_widget_pdns_2.update()

When run, this tab will look like:

--

Now we do tab #5, our Domain Whois tab. Performing this query is complicated by the fact that there are

now over 1,200 different ICANN-recognized TLDs,14 each TLD can have a different authoritative WHOIS server

(or none at all), and domains may now include "internationalized" domains with non-ASCII characters.

Ideally, what we'd like would be to programmatically get something akin to what we'd get from a command

line Whois client (such as Marco D'Itri's excellent command line Whois client15). Here's an example of what

text output from that client looks like:

$ whois uoregon.edu
[...]
Domain Name: UOREGON.EDU

Registrant:
 University of Oregon
 1225 Kincaid St
 Eugene, OR 97403
 US

Administrative Contact:
 UO Domain Name Management
 University of Oregon

14 https://newgtlds.icann.org/en/program-status/statistics
15 https://github.com/rfc1036/whois

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

39

 1212 University of Oregon
 Eugene, OR 97403-1212
 US
 +1.541346
 uoregon-dns@uoregon.edu

Technical Contact:
 UO Domain Name Management
 University of Oregon
 1212 University of Oregon
 Eugene, OR 97403-1212
 US
 +1.541346
 uoregon-dns@uoregon.edu

Name Servers:
 NS1.F5CLOUDSERVICES.COM
 RUMINANT.UOREGON.EDU
 PHLOEM.UOREGON.EDU
 LSU-BDDS1.LSU.EDU

Domain record activated: 23-Feb-1988
Domain record last updated: 26-Dec-2020
Domain expires: 31-Jul-2021

Normally, for a bulletproof programmatic solution, we'd use a commercial Domain WHOIS API solution from

someone who specializes in collecting and parsing Domain Whois such as DomainTools' Domain Whois API16

or iThreat's CyberTOOLBELT API.17 [Note: DomainTools and CyberToolbelt are Farsight Security partners.18]

For the purpose of this example, however, we wanted to see what we could do with a free option. We decided

to try Danny Cork's Python Whois library.19 If we're using Danny Cork's Python Whois library, all we need to

add to our Python code is a suitable import statement near the top:

https://github.com/DannyCork/python-whois

import whois

And then in funca, we'll use:

 domain = whois.query(fqdn)
 domain_json = json.dumps(domain.__dict__, indent=4, default=str)

 try:
 t5.destroy()
 except:
 pass

 t5 = tk.Frame()
 mynotebook.add(t5, text="DomWhois")
 mytext_widget_5 = tk.Text(t5,height=40,width=132)
 mytext_widget_5.pack(side=TOP, anchor=NW)

16 https://www.domaintools.com/resources/api-documentation/whois-lookup
17 https://www.cybertoolbelt.com/index.php#api
18 See https://www.farsightsecurity.com/partners/all/
19 https://github.com/DannyCork/python-whois

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

40

 mytext_widget_5.insert(tk.END, domain_json)

That said, the JSON format output from that library that looks quite different from what we get from a normal

command-line WHOIS client -- in particular, we don't get any point-of-contact information:

This is nonetheless sufficient for proof-of-concept purposes.

--

Handling tab #6 (IP Whois) is very similar to tab #5. For the IP Whois Checks, we decided to use IPWhois.20

Doing so involves adding the following line to the imports area of the code:

from ipwhois import IPWhois

All we need substantively in the funca area is:

 myip = socket.gethostbyname(fqdn)
 obj = IPWhois(myip)
 res=obj.lookup_whois(get_referral=True)
 pretty_printed_text = json.dumps(res, indent=4)

 try:
 t6.destroy()
 except:
 pass

 t6 = tk.Frame()
 mynotebook.add(t6, text="IPWhois")
 mytext_widget_6 = tk.Text(t6,height=40,width=132)
 mytext_widget_6.pack(side=TOP, anchor=NW)
 mytext_widget_6.insert(tk.END, pretty_printed_text)

20 https://github.com/secynic/ipwhois

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

41

Typical output looks like:

--

Now we'll do tab #7, our ASN Whois tab. Tab #7 is sufficiently complex that we've put most of it into the

function myAsnWhois, which we'll describe in a subsequent section. For now, it is sufficient to understand that

we'll be producing a local HTML file which we then "scrape" to create an image for display in the tab:

 # scraping the ASN Whois
 my_asn_info_file = myAsnWhois(fqdn)
 myasnpage = asyncio.get_event_loop().run_until_complete\
 (scrapeAFQDN(my_asn_info_file, my_log_box, "file"))

 try:
 t7.destroy()
 except:
 pass

 t7 = tk.Frame()
 mynotebook.add(t7, text="ASNWhois")
 asnimg7 = ImageTk.PhotoImage(Image.open(myasnpage))
 image_window = ScrollableImage(t7, image=asnimg7,
 width=1000, height=600)
 image_window.pack(anchor=NW)
 image_window.update()

Sample output for this tab looks as shown below. Note that this tab is showing a screen shot of the HTML

rendered page.

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

42

--

Tab #8 has a list of network prefixes announced by the ASN that announced the IP we're interested in.

To do tab #8, we go from FQDN --> IP(FQDN) --> ASN(IP(FQDN)) --> Prefixes announced by that ASN.

In this case we look it up via an IP-to-ASN database that we found, but we could also have done a live

query against the Routeviews IP-to-ASN service available via DNS:

 # we need the ASN for some of the filenames, so we'll get that first
 myip2asnfilspec = str(Path.home()) + "/.bang_question_files/" +\
 "my_ip2asn_db_file"
 asndb = pyasn.pyasn(myip2asnfilspec)
 asn = asndb.lookup(myip)

Once we have the ASN, the same database will let us get a report of the associated ASNs:

 # get the prefixes associated with the ASN
 prefixes = asndb.get_as_prefixes(asn[0])
 prefixes = sorted(prefixes)

Because the prefixes are returned as a Python list, we put the list elements together into a single long text

string separated with newlines. After that, things proceed normally for a text item:

 combined_text=""
 for pre in prefixes:
 combined_text=combined_text+"\n"+pre

 try:
 t8.destroy()
 except:
 pass

 t8 = tk.Frame()
 mynotebook.add(t8, text="Prefixes")
 mytext_widget_8_prefixes = tk.Text(t8,height=40,width=132)

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

43

 mytext_widget_8_prefixes.pack(side=TOP, anchor=NW)
 mytext_widget_8_prefixes.insert(tk.END, "AS"+str(asn[0])+" Prefixes:\n")
 mytext_widget_8_prefixes.insert(tk.END, combined_text)

--

Tab #9 is the geolocation tab. The code for this tab is actually long enough we should probably have pulled it

into its own stand-alone function. Nonetheless, just to mix it up, we'll leave the code inline.

We begin by setting up the filenames we need. We create two filenames, one with the full filename and

another one that's a "latest" version of the maps for that FQDN:

 home = str(Path.home())
 subdir9 = "geolocation-maps"
 myfilename9 = fqdn
 utcdatetime9 = datetime.datetime.utcnow().isoformat() + 'Z'
 myextension9 = "jpeg"
 mymapextension9 = "png"
 mydir9 = home + "/" + subdir9
 fullfilenamepart9 = fqdn + "_" + utcdatetime9 + "." + myextension9
 latestversion9 = fqdn + "_" + "latest" + "." + myextension9
 mymapname9 = mydir9 + "/" + fqdn + "_" + utcdatetime9 + "." + \
 mymapextension9
 myfilespec9 = mydir9 + "/" + fullfilenamepart9

After the first run, the directory will exist, but we'll still check and force its creation if it doesn't exist:

 # ensure the directory exists
 try:
 os.makedirs(mydir9)
 except OSError as e:
 if e.errno != errno.EEXIST:
 raise

Now we make sure we can create the two files we need:

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

44

 try:
 open(myfilespec9, 'a').close()
 except:
 raise

 try:
 open(mymapname9, 'a').close()
 except:
 raise

Now we're ready to actually do the geolocation. We're using IP2Location-Lite, which uses a local database file

for the look up:

 geoipfilespec = str(Path.home()) + "/.bang_question_files/" + \
 "IP2LOCATION-LITE-DB9.IPV6.BIN"
 database = IP2Location.IP2Location(geoipfilespec, "SHARED_MEMORY")
 rec = database.get_all(myip)
 lat = rec.latitude
 lon = rec.longitude
 cit = rec.city

Mapping the data with Plotly Express is easiest if the data is transformed into a Panda Dataframe first:

 # map it (we need to make it into a DataFrame first
 d=[{"txt":cit,"lat":lat,"lon":lon,"siz":10}]
 df=pd.DataFrame(d,columns=["txt","lat","lon","siz"])

We choose between two map projections ("albers usa" or "mercator"), depending on whether we're in the US

(or southern Canada), which we handle as a special case, or anywhere else in the world:

 if ((lon >= -180) and (lon <= -52) and
 (lat >= 36) and (lat <= 83)):
 fig=px.scatter_geo(df,lat="lat",lon="lon",text="txt",\
 size="siz",projection="albers usa",width=800,height=600)
 else:
 fig=px.scatter_geo(df,lat="lat",lon="lon",text="txt",\
 size="siz",projection="mercator",width=800,height=600)

 fig.write_image(mymapname9)

 # ensure the image is appropriately sized
 map_img=Image.open(mymapname9).resize((800, 600),Image.ANTIALIAS)
 map_img.load()

Unfortunately, the image emitted by Plotly Express has an "alpha channel" (it's an RGBA file rather than RGB).

We found a fix for this, and created a new RGB-only file:

 # BUG: https://stackoverflow.com/questions/42099914/imagetk-photoimage-doesnt-show-
up-on-osx-but-does-on-windows
 # See https://stackoverflow.com/questions/41576637/are-rgba-pngs-unsupported-in-
python-3-5-pillow
 # See Yuji Tomita's post at https://stackoverflow.com/questions/9166400/convert-rgba-
png-to-rgb-with-pil
 background2 = Image.new("RGB", map_img.size, (255,255,255))
 background2.paste(map_img, mask=map_img.split()[3]) # 3 is the alpha channel

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

45

 background2.save(myfilespec9, 'JPEG', quality=80)
 img4 = ImageTk.PhotoImage(background2)

After that, everything's normal/typical:

 try:
 t9.destroy()
 except:
 pass

 t9 = tk.Frame()
 mynotebook.add(t9, text="GeoIP")
 panel2 = tk.Label(t9, image=img4)
 panel2.pack(side=TOP, anchor=NW)
 mynotebook.add(t9)

Sample tab #9 output looks like:

--

And finally, we'll handle launching tab #10, our network graph tab. What's a little different about this tab is

that the network graph is being created as a PDF file, and then read and converted with "Fitz."

We begin by setting up the filenames we need, much as we did in tab #9:

 subdir10 = "network-graphs"
 myfilename10 = fqdn
 utcdatetime10 = datetime.datetime.utcnow().isoformat() + 'Z'
 myextension10 = "pdf"
 mydir10 = home + "/" + subdir9
 fullfilenamepart10 = fqdn + "_" + utcdatetime10 + "." + myextension10
 myfilespec10 = mydir10 + "/" + fullfilenamepart10
 latestversion10 = fqdn + "_" + "latest" + "." + myextension10

Once again we ensure the directory and file exist:

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

46

 # ensure the directory exists
 try:
 os.makedirs(mydir10)
 except OSError as e:
 if e.errno != errno.EEXIST:
 raise

 try:
 open(myfilespec10, 'a').close()
 except:
 raise

The actual process of creating the image is just a one liner, combining a DNSDB call to get the data with

another function that will draw the graph:

 draw_the_graph(doQuery(fqdn, "limited"), myfilespec10)

This is where we use fitz to convert the PDF to a byte-image:

 doc=fitz.open(myfilespec10)
 page=doc.loadPage(0)
 pix=page.getPixmap()
 mode="RGB"

Now we proceed fairly normally to handle this final tab:

 try:
 t10.destroy()
 except:
 pass

 t10 = tk.Frame()
 mynotebook.add(t10, text="Graph")
 t10img=Image.frombytes(mode,[pix.width, pix.height], pix.samples)
 t10tkimg=ImageTk.PhotoImage(t10img)
 t10_image_window = ScrollableImage(t10, image=t10tkimg,
 width=800, height=600)
 t10_image_window.pack(anchor=NW)

A sample version of our final tab looks like:

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

47

--

"While we're here," so-to-speak, let's also handle the "Clear" button (aka "funcb"), and the "Quit" button

(aka "funcc").

def cleanup_tab(tab_to_cleanup):
 try:
 tab_to_cleanup.destroy()
 except:
 pass

def funcb(event=None):
 global FQDN, my_log_box
 global t1, t2, t3, t4, t5, t6, t7, t8, t9, t10

 FQDN.delete(0, 'end')

 my_log_box.delete('1.0', END)
 my_log_box.update()

 # we intentionally clean these up in reverse order and leave t1 alone
 my_tabs = [t10, t9, t8, t7, t6, t5, t4, t3, t2]
 for i in my_tabs:
 cleanup_tab(i)

--

The Quit button callback, funcc, remains pretty basic:

Callback for quit button
def funcc(event=None):
 sys.exit()

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

48

If you look at the actual code (as shown in the Appendix II), you'll see we've added logging statements such as:

 my_log_box.insert(tk.END, "New run initiated\n")
 my_log_box.update()

Each log message will normally end with an explicit newline (backslash n). The tk.END argument ensures we

add the new entry to the bottom of the log box. The my_log_box.update() statement ensures that the log

message gets displayed immediately, rather than potentially being buffered/delayed.

14. SCRAPING A PAGE

So tab #2 gets a scraped copy of the FQDN the user specified. We'll go through the whole function that makes

that happens. We include this function into the mainline routine with:

make sure you don't include the .py as part of the name of the imports
from scrapePage import scrapeAFQDN

Here's the scrapePage.py file. We begin with our import statements, including both standard libraries and the

key-to-screen-scraping Pyppeteer library. We also define a simple error display routine to handle typo'd

FQDNs:

$ cat scrapePage.py
import asyncio
import datetime
import errno
import os
from pathlib import Path
import socket

https://pypi.org/project/pyppeteer2/
https://miyakogi.github.io/pyppeteer/reference.html
One time, download Chromium: $ pyppeteer-install
from pyppeteer import *

import tkinter as tk
from tkinter.messagebox import *

def display_error():
 tkinter.messagebox.showerror(message=\
 "Couldn't get FQDN.\nTypo in the FQDN entered?",
 title="Message Box", icon="error")

Our scrapeAFQDN function begins with building the filenames we need, and ensuring the directory and file

exist. There's a slight twist to this because we could be scraping a remote web site (a "url") or a local html file:

async def scrapeAFQDN(fqdn, my_log_box, url_or_file):
 # the snapshot goes to this filespec
 # if on something non-Un*x-ish, remember os.path.join(dir, f)
 my_log_box.insert(tk.END, "Making sure archive directory exists...\n")
 my_log_box.update()
 home = str(Path.home())
 subdir = "snapshots"
 myfilename = fqdn
 utcdatetime = datetime.datetime.utcnow().isoformat() + 'Z'

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

49

 myextension = "jpeg"
 mydir = home + "/" + subdir
 fullfilenamepart = fqdn + "_" + utcdatetime + "." + myextension
 latestversion = fqdn + "_" + "latest" + "." + myextension

 # ensure the directory exists
 try:
 os.makedirs(mydir)
 except OSError as e:
 if e.errno != errno.EEXIST:
 raise

 # ensure the timestamped file exists
 if (url_or_file == "url"):
 myfilespec = mydir + "/" + fullfilenamepart
 # ensure the directory exists
 try:
 os.makedirs(mydir)
 except OSError as e:
 if e.errno != errno.EEXIST:
 raise
 elif (url_or_file == "file"):
 myfilespec = fullfilenamepart
 try:
 open(myfilespec, 'a').close()
 except:
 raise

The next major chunk of this function handles confirming that the resource to be scraped in reachable on one

of the two ports we're going to try, either 443 (https) or 80 (http):

 my_log_box.insert(tk.END, "Confirming page is reachable on 443 or 80...\n")
 my_log_box.update()

 domain_resolve_ok = False
 if (url_or_file == "url"):
 # verify page exists, and figure out if https is supported
 try:
 # note: you do NOT need to explicitly permit inbound traffic
 # on macOS (even if it asks you to allow it!)
 myaddrinfo = socket.getaddrinfo(fqdn, 443)
 url = "https://"+fqdn
 domain_resolves_ok = True
 except socket.gaierror:
 # couldn't connect on default SSL/TLS port
 # fall back to regular http
 try:
 myaddrinfo = socket.getaddrinfo(fqdn, 80)
 url = "http://"+fqdn
 domain_resolves_ok = True
 except:
 # couldn't even connect on standard port
 display_error()
 return(1)
 elif (url_or_file == "file"):
 domain_resolves_ok = True
 url = "file://"+fqdn
 myfilespec = fqdn + ".jpeg"

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

50

Assuming the site (or local html file) to be scraped is reachable, we actually scrape it. We're going to go

through this bit line by line:

 if domain_resolves_ok == True:
 browser = await launch({'headless': True, 'ignoreHTTPSErrors': True,\
 'defaultViewport': None, 'viewport_width': 800})

The above statement creates a "headless" Chromium browser. We intentionally disregard HTTPS errors, but

you might prefer to explicitly log the errors instead. We arbitrarily decided to use a viewport of 800 pixels, but

allow the page length to be its natural length.

 context = await browser.createIncognitoBrowserContext()
 page = await browser.newPage()

The above statements create a new incognito browser page. Next, we *attempt* to disable animation (but

this doesn't appear to currently happen the way it should):

 await page._client.send('Animation.disable')

We're now ready to retrieve the page we want to grab, and grab it. Note the "fullPage" setting: we're trying to

get the whole thing, not just what might normally be available in an 800x600 pixel viewport:

 await page.goto(url)
 await page.screenshot({'path': myfilespec, 'type': 'jpeg', \
 'quality': 80, 'fullPage': True})
 await browser.close()

Having grabbed the page, we conclude by setting up the link to the latest version:

 # ensure the "latest" version is updated for this URL
 if (url_or_file == "url"):
 mylatest = mydir + "/" + latestversion
 # print("mylatest =" + mylatest)
 elif (url_or_file == "file"):
 mylatest = myfilespec + "_" + "latest" + "." + myextension
 try:
 os.unlink(mylatest)
 except:
 pass
 os.symlink(myfilespec, mylatest)

 return(myfilespec)

15. DOING OUR DNSDB QUERIES

The next function we're going to look at is the code that handles making queries against DNSDB. This code is

an updated version of the code that was discussed in the "Run" part of Farsight's recent "Crawl-Walk-Run"

webinar series. We'll discuss it line-by-line. We begin by importing the standard libraries we need:

from pathlib import Path
from io import BytesIO
import json
import re
import sys
from time import strftime, gmtime

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

51

And we're going to use pycurl to make our DNSDB API version 221 calls:

import pycurl

The extract_time function is designed to pull the time_last value out of the JSON output we receive. Because

we have records both from our sensors AND from ICANN zone files/CZDS files, we need to check for both sorts

of time_last values since we might have one or the other:

See stackoverflow.com/questions/26924812/python-sort-list-of-json-by-value
def extract_time(myrecord):
 json_format=eval(myrecord)

 try:
 extracted_bit = json_format['obj']['time_last']
 except:
 extracted_bit = json_format['obj']['zone_time_last']

 return extracted_bit

The next set of three functions handles formatting our DNSDB output for our three use cases. The first version

handles formatting output for tab #3, our DNSDB RRnames tab. We begin by extracting the JSON elements

we want:

def print_bits(myrecord):
 myformat = '%Y-%m-%d %H:%M:%S'
 myrecord_json_format = json.loads(myrecord)
 extract_bit = myrecord_json_format['obj']['rrname']

 extract_bit_2 = myrecord_json_format['obj']['rrtype']
 extract_bit_2 = str('{0:<5}'.format(extract_bit_2))

 temp_bit_3 = myrecord_json_format['obj']['rdata']
 extract_bit_3 = json.dumps(temp_bit_3)

Once again, just as we had to handle both regular time_last values and zone file time_last values for our

sorting function, we also had to handle that for the actual output:

 try:
 extract_tl = myrecord_json_format['obj']['time_last']
 except:
 extract_tl = myrecord_json_format['obj']['zone_time_last']

The next section formats that output in our preferred format: '%Y-%m-%d %H:%M:%S'

 tl_datetime = gmtime(extract_tl)
 enddatetime = strftime(myformat, tl_datetime)

We repeat the extraction process for the time_first values:

 try:
 extract_tf = myrecord_json_format['obj']['time_first']
 except:
 extract_tf = myrecord_json_format['obj']['zone_time_first']

21 https://docs.dnsdb.info/dnsdb-apiv2/

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

52

 tf_datetime = gmtime(extract_tf)
 startdatetime = strftime(myformat, tf_datetime)

Now that we're done getting time values, we extract the counts we want:

 extract_count = myrecord_json_format['obj']['count']
 formatted_count = str('{:>11,d}'.format(extract_count))

The preceeding format allows for a relatively wide count field, but that's required for some names. We right

justify the field, and use comma separators for readability. With all of the preceding out of the way, we then

assemble the line, quoting the time values in the output:

 results = extract_bit + " " + extract_bit_2 + " \"" + enddatetime + \
 "\" \"" + startdatetime + "\" " + formatted_count + \
 " " + extract_bit_3

We're suppressing the SOA records. If you want them, obviously you can just return results unconditionally.

 if (results.find("SOA") == -1):
 return results
 else:
 return ""

The second version handles formatting output for our DNSDB Rdata IP query. This routine is very similar to

the formatting done for the RRname, but with a wider RRname field:

def print_rdata_bits(myrecord):
 myformat = '%Y-%m-%d %H:%M:%S'
 myrecord_json_format = json.loads(myrecord)
 extract_bit = myrecord_json_format['obj']['rrname']
 extract_bit = str('{0:<50}'.format(extract_bit))

 extract_bit_2 = myrecord_json_format['obj']['rrtype']
 extract_bit_2 = str('{0:<5}'.format(extract_bit_2))

 temp_bit_3 = myrecord_json_format['obj']['rdata']
 extract_bit_3 = json.dumps(temp_bit_3)

 try:
 extract_tl = myrecord_json_format['obj']['time_last']
 except:
 extract_tl = myrecord_json_format['obj']['zone_time_last']

 tl_datetime = gmtime(extract_tl)
 enddatetime = strftime(myformat, tl_datetime)

 try:
 extract_tf = myrecord_json_format['obj']['time_first']
 except:
 extract_tf = myrecord_json_format['obj']['zone_time_first']

 tf_datetime = gmtime(extract_tf)
 startdatetime = strftime(myformat, tf_datetime)

 extract_count = myrecord_json_format['obj']['count']
 formatted_count = str('{:>11,d}'.format(extract_count))

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

53

 results = extract_bit + " " + extract_bit_2 + " \"" + enddatetime + \
 "\" \"" + startdatetime + "\" " + formatted_count + \
 " " + extract_bit_3

This time we also handle filtering some unwanted "junk" names we noticed. Obviously, this is not a complete

list of "junk" names, just enough to show the general process that can be used to surpress names you don't

like. We match them using the "re" ("regular expressions") library:

 unwanted_name_found = False
 unwanted_rrnames =
r'(.*\.verteiltesysteme.net\.$|.*\.eslared\.org\.ve\.$|.*\.usac\.edu\.gt\.$)'
 if re.match(unwanted_rrnames, extract_bit):
 unwanted_name_found = True

 if ((results.find("SOA") == -1) and (unwanted_name_found == False)):
 return results
 else:
 return ""

The third and final version of the formatting routine only extracts limited values from the query output,

e.g., the bits we need for our network graph in tab #10:

def print_limited_bits(myrecord):

 myrecord_json_format = json.loads(myrecord)
 extract_bit = myrecord_json_format['obj']['rrname']

 extract_bit_2 = myrecord_json_format['obj']['rrtype']
 # extract_bit_2 = str('{0:<5}'.format(extract_bit_2))

 temp_bit_3 = myrecord_json_format['obj']['rdata']
 extract_bit_3 = json.dumps(temp_bit_3)
 extract_bit_3 = extract_bit_3.replace(' ','')

 results = extract_bit + " " + extract_bit_2 + " " + extract_bit_3

In this third version, we show a different approach to filtering, selecting four RRtypes using anchored regular

expressions:

 rrtypes = r'^(A|AAAA|CNAME|NS)$'

 if re.match(rrtypes,extract_bit_2):
 return results
 else:
 return ""

The make_query routine actually handles doing the DNSDB query. Looking at it line-by-line:

def make_query(fqdn, query_type):

We begin by retrieving our API key from ~/.dnsdb-apikey.txt

 # get the DNSDB API key
 filepath = str(Path.home()) + "/.dnsdb-apikey.txt"
 with open(filepath) as stream:
 myapikey = stream.read().rstrip()

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

54

Depending on the query type, we'll make one of three queries:

 if (query_type == "RRname"):
 url = "https://api.dnsdb.info/dnsdb/v2/lookup/rrset/name/" + fqdn
 elif (query_type == "RdataIP"):
 url = "https://api.dnsdb.info/dnsdb/v2/lookup/rdata/ip/" + fqdn
 elif (query_type == "RdataName"):
 url = "https://api.dnsdb.info/dnsdb/v2/lookup/rdata/name/" + fqdn

The requests header will pass the API key and ensure we get JSON Lines-format output returned:

 requestHeader = []
 requestHeader.append('X-API-Key: ' + myapikey)
 requestHeader.append('Accept: application/jsonl')

The rest of the Pycurl query is pretty typical:

 buffer = BytesIO()
 c = pycurl.Curl()
 c.setopt(pycurl.URL, url)
 c.setopt(pycurl.HTTPHEADER, requestHeader)
 c.setopt(pycurl.WRITEDATA, buffer)
 c.perform()
 rc = c.getinfo(c.RESPONSE_CODE)
 body = buffer.getvalue()

The buffer gets returned as bytes; we want a normal Python3 string, so we decode it:

 content = body.decode('iso-8859-1')

Hopefully all will be well (in which case we'll see a 200 return code). If we see something else, that means we

won't have results. In that case, just return the integer response code:

 if rc == 200:
 return content
 else:
 return rc

We're now ready to handle the entry point for the DNSDB queries. In a nutshell, we begin by getting setup to

handle RRname queries OR Rdata queries:

def doQuery(fqdn, full_or_limited):

 if ((full_or_limited == "limited") or (full_or_limited == "full")):
 content = make_query(fqdn, "RRname")
 elif (full_or_limited == "RdataIP"):
 content = make_query(fqdn, "RdataIP")
 else:
 print("In dnsbRun.py (doQuery) ="+full_or_limited)
 sys.exit(0)

If the DNSDB query goes awry, we'll get a numeric status code instead of DNSDB results. Assuming all went

well, we'll break the output into a list, splitting on newline boundaries:

 try:
 test = int(content)

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

55

 print("Error making dnsdb query! Return code = "+str(test))
 sys.exit(0)
 except:
 sList = list(line for line in content.strip().split("\n"))

The next chunk of code strips the Farsight Streaming API Framing Protocol22 statements:

 # we want to dump the first line in that output
 # print ("sList[0]="+sList[0])
 if sList[0] == '{"cond":"begin"}':
 sList.pop(0)
 else:
 print("SOMETHING ODD HAPPENED POPPING THE FIRST ELEMENT")

 # print ("sList[-1]="+sList[-1])
 if ((sList[-1] == '{"cond":"succeeded"}') or
 (sList[-1] == '{"cond":"limited","msg":"Result limit reached"}')):
 sList.pop()
 else:
 print("SOMETHING ODD HAPPENED POPPING THE LAST ELEMENT")

Now we're going to sort the remaining results by the time values we extracted:

 sList2 = sorted(sList, key=extract_time, reverse=True)

At this point, we're ready to format output. How we format our output depends a bit on HOW we're going to

use it. We have three routines (which you've already seen discussed) to handle this:

 formatted_output=""
 results=""
 for line in sList2:
 if (full_or_limited == "full"):
 results=print_bits(line)
 elif (full_or_limited == "limited"):
 results=print_limited_bits(line)
 elif (full_or_limited == "RdataIP"):
 results=print_rdata_bits(line)

 if results != "":
 result_with_nl=results+"\n"
 formatted_output=formatted_output+result_with_nl

 if len(formatted_output) == 0:
 formatted_output = "No results found\n"
 return(formatted_output)

16. HANDLING THE CONTENT FOR THE ASN WHOIS TAB

While the Domain Whois and IP Whois were easily handled via canned third-party libraries, getting ASN Whois

(including point-of-contact information) requires a little more effort. There were several issues we had to deal

with:

22 https://docs.dnsdb.info/dnsdb-saf-protocol/

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

56

• Precanned 3rd party routines exist for getting ASN Whois information. If you're looking for something

close to what's available for domain names and IP addresses, the closest option may be the ipwhois

ASN Whois that leverages Team Cymru ASN information.23

• Some ASN Whois queries may only return barebones information about the ASN itself, and not

anything about the points of contact associated with the ASN. We wanted the "whole thing," as you'd

get if you made a command line Whois query for an ASN at the shell prompt.

• Theoretically one could request ASN information from ARIN RWS in multiple formats, including text,

JSON and XML.24 Unfortunately, the only ARIN RWS format that returned point of contact information

was XML. Okay, XML format it shall be.

• The raw XML output was pretty much unusable as-is, unlike the readily-readable pretty-printed JSON-

format Whois output. Converting the raw XML to HTML format required applying the ARIN XML

stylesheet to the raw XML. That's not a hard process, IF the XML style sheet specified by the page is

valid. Unfortunately, the raw ARIN XML style sheet fails validation as shipped. The fix for this wasn't

hard -- once we were able to identify exactly what the issue was.

• We didn't have a lot of experience working with XML libraries, so we basically ended up try most of

them before settling on lxml.

• Displaying an HTML file in Tkinter required us to "scrape" the local HTML file.

Bottom line, we got it done, but it felt more painful than it should have been. Let's walk through it:

$ cat asnWhois.py
import datetime
import errno
import socket
import os
from pathlib import Path

import dns.resolver
from lxml import etree

import requests

With imports out of the way, we now deal with some convenience functions:

def confirmDirExists(mydir):
 try:
 os.makedirs(mydir)
 except OSError as e:
 if e.errno != errno.EEXIST:
 raise

def confirmFileExists(myfilespec):
 try:
 open(myfilespec, 'a').close()
 except:
 raise

def fqdnToIP(fqdn):
 myip = socket.gethostbyname(fqdn)

23 https://pypi.org/project/ipwhois/

 https://ipwhois.readthedocs.io/en/latest/ASN.html
24 https://www.arin.net/resources/registry/whois/rws/api/

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

57

 return(myip)

Unlike the last time we needed to map IP addresses to ASNs, this time we're going to use Oregon Routeviews:

def reverseIPforRouteviews(myip):
 reversed_ip = ".".join(reversed(myip.split('.')))+".asn.routeviews.org"
 return(reversed_ip)

def getASNfromRouteviews(reversed_ip):
 answers = dns.resolver.resolve(reversed_ip, 'TXT')
 split_answers=answers.response.answer[0].to_text().split(" ")
 myasn=split_answers[4]
 myasn=myasn.replace('"','')
 return(myasn)

Now we handle making two types of filenames for the ASN Whois work -- raw (XML) and cooked (HTML):

def makeOutputFile(fqdn, outputfiletype):
 home = str(Path.home())
 subdir = "asnwhois_output"
 utcdatetime = datetime.datetime.utcnow().isoformat() + 'Z'

 if (outputfiletype == "raw"):
 myextension = "xml"
 elif (outputfiletype == "cooked"):
 myextension = "html"

 mydir = home + "/" + subdir
 # if on something non-Un*x-ish, remember os.path.join(dir, f)
 fullfilenamepart = fqdn + "_" + utcdatetime + "." + myextension
 latestversion = fqdn + "_" + "latest" + "." + myextension

 # esure the directory exists
 confirmDirExists(mydir)

 # ensure the timestamped file exists
 myfilespec = mydir + "/" + fullfilenamepart
 confirmFileExists(myfilespec)

 # set up a convenience link to the latest version
 mylatest = mydir + "/" + latestversion
 makeLink(myfilespec, mylatest)

 return(myfilespec)

def myAsnWhois(fqdn):
 # we need the IP of the FQDN to map to an ASN
 myip = fqdnToIP(fqdn)

 # get the domain we need to get the ASN from Routeviews
 reversed_ip = reverseIPforRouteviews(myip)

 # do IP-->ASN using Routeviews
 myasn = getASNfromRouteviews(reversed_ip)

 # Joint Whois Project allows all queries to go to a single
 # whois server which will redirect as appropriate, see
 # https://www.lacnic.net/1040/2/lacnic/lacnics-whois (we'll use ARIN)

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

58

 # now assemble the query URL
 myurl = "https://whois.arin.net/rest/asn/" + myasn + "/pft?s=" + myasn

 # create the output file to hold the ASN Whois Information
 myfilespec = makeOutputFile(fqdn, "raw")

 # This time we'll demonstrate using requests instead of pycurl
 headers = {'Accept' : 'application/xml'}
 response = requests.get(myurl, headers=headers)

 # Throw an error for bad status codes
 response.raise_for_status()

 # if we want the response in unicode, use response.text below
 # if we want the response in bytes, use response.content instead

 # write the results to a file
 with open(myfilespec, "wb") as my_file:
 my_file.write(response.content)

 # OK, now we've got an XML copy saved... let's convert it to HTML, save that file and
 # return the name of that file...

 # IMPORTANT NOTE: we're using a saved copy of the XSLT file because ARIN has
 # https://www.w3.org/1999/XSL/Transform BUT THERE SHOULD BE NO "s" there
 # (e.g., the URI is regular http not https). If this isn't fixed,
 # etree.XSLT will indicated that no stylesheet exists. A subtle bug...
 # FWIW, the Oxygen XML Editor immediately found the issue, very impressive!

 XSLT_file = str(Path.home()) + "/.bang_question_files/" + "./website.xsl"
 transform = etree.XSLT(etree.parse(XSLT_file))
 result = transform(etree.parse(myfilespec))
 my_transformed_results = etree.tostring(result, pretty_print=True)

 cooked_file = makeOutputFile(fqdn, "cooked")

 with open(cooked_file, "wb") as outfile:
 outfile.write(my_transformed_results)

 return(cooked_file)

17. HANDLING DRAWING THE NETWORK GRAPH (THE CONTENT FOR THE FINAL TAB)

Our last substantive content is a network graph for the final tab based on the data from the RRname query.

We looked at three graphing packages for this:

• graph-tool25

• igraph26 and

• networkx27

Ultimately, we decided to go with igraph. We'll now explain how we created the content for that tab:

25 https://git.skewed.de/count0/graph-tool/-/wikis/installation-instructions#homebrew
26 https://igraph.org/python/
27 https://networkx.org/documentation/stable/index.html

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

59

$ cat draw_network_graph.py
import igraph
import numpy as np

The data for the graph is passed in from a specially-limited copy of some DNSDB API output:

def draw_the_graph(read_data, myfilespec10):
 record_count = read_data.count('\n')

We begin by creating a new directed graph ("directed" in this case meaning the graph edges have a

"from --> to" property):

 # Create a directed graph
 g = igraph.Graph(directed=True)

Next we're going to build our list of nodes, which igraph refers to as "verticies:"

 # begin by creating the list of unique vertices
 mynodes = []
 source_nodes = []
 dest_nodes = []
 edge_types = []

 my_individual_lines = []
 my_individual_lines=read_data.split("\n")
 for i in range(0,record_count):
 fields=my_individual_lines[i].split(" ")
 if len(fields)==3:
 # remove spaces between rdata elements in fields[2]
 tempfield=fields[2]
 fields[2]=tempfield.replace(",", "\n")

 # add the node names to the list of vertices
 # a vertex can be either a source or destination node
 mynodes.append(fields[0])
 mynodes.append(fields[2])

 # drop any duplicate vertices
 mynodes = np.ndarray.tolist(np.unique(mynodes))

 # now let's build three lists: sources, destinations and edge_types
 source_nodes.append(fields[0])
 dest_nodes.append(fields[2])
 edge_types.append(fields[1])

 mynode_count=len(mynodes)

 # create the vertices we need
 g.add_vertices(mynode_count)

 # populate the vertex properties
 for i in range(0,mynode_count):
 g.vs[i]["id"] = i
 g.vs["name"] = mynodes[i]
 g.vs[i]["label"] = mynodes[i]

 # now let's create the edges

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

60

 for i in range(0,record_count):
 source=mynodes.index(source_nodes[i])
 dest= mynodes.index(dest_nodes[i])
 type= edge_types[i]
 g.add_edges([(source,dest)])
 g.es[i]["label"] = type
 g.es[i]["name"] = type
 g.es[i]["weight"] = 1

 visual_style = {}
 # Set bbox and margin
 visual_style["bbox"] = (800,800)
 visual_style["margin"] = 100

 # Set vertex colour and size
 visual_style["vertex_color"] = 'white'
 visual_style["vertex_size"] = 125

 # Set vertex lable size
 visual_style["vertex_label_size"] = 10

 # Don't curve the edges
 visual_style["edge_curved"] = False

Selection of an optimal layout will have a huge impact on the usability of the chart. For most of our test cases,

layout_reingold_tilford_circular seems to work quite well.

 # Set the layout
 # my_layout = g.layout_kamada_kawai()
 # my_layout = g.layout_circle()
 # my_layout = g.layout_drl()
 # my_layout = g.layout_fruchterman_reingold()
 # lgl = "large graph layout"
 # my_layout = g.layout_lgl()
 # my_layout = g.layout_random()
 # my_layout = g.layout_reingold_tilford()
 my_layout = g.layout_reingold_tilford_circular()

 visual_style["layout"] = my_layout

 # Plot the graph
 igraph.plot(g, myfilespec10, **visual_style)

18. REMAINING ISSUES

Because this is an experimental/developmental/proof-of-concept application, some bits of this application are

incomplete or may have residual issues. This section is meant to capture some of those for posterity.

NOTE: This list of remaining gaps/issues is indicative, but not necessarily comprehensive.

I. General Issues:

• Application currently uses global variables. These should be refactored for improve modularity.

• We do not currently check and cleanly handle all possible error paths. More comprehensive error

handling would improve overall application robustness.

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

61

• Users cannot save or print individual tabs (or entire analyses), except to the extent that that content

is already being automatically and routinely saved, or user cuts and pastes text content or manually

screen captures graphic content.

• Unless systems have effectively-unlimited disk space, cached screenshots and other elements will

eventually need to be manually cleaned up to avoid disk space exhaustion.

• Users who need the ability to control their apparent endpoint can do so through use of a VPN, but

some users might want or need more granular/integrated proxy support. There is no integrated proxy

support currently.

II. Screen Capture-Related Issues (tab #2):

• A significant number of sites could not be successfully scraped due to issues with animations,

multimedia, video, or other structural page-related issues (see the sites flagged in the Appendix V).

Finding a solution for these currently-unscrapable sites should be a priority.

• Currently the app only handles home pages or other FQDNs accessible on port 443 (https) or port 80

(http). The application should allow users to specify an arbitrary deep page on a site, including pages

served on non-standard arbitrary ports.

• Sites are not scraped for client-specific environments. That is, we do offer the ability to masquerade

as an iPhone, Android device, etc. when scraping, even though some sites may offer radically

different user experience for different platforms.

• When testing the proof-of-concept application with the site ukings.ca , we found that site only accepts

TLS1.3 connections. Our headless Chromium browser is not TLS1.3-aware, and hence cannot connect

to TLS1.3-only sites (see https://bugs.chromium.org/p/chromium/issues/detail?id=1054891). Other

sites may also be moving to a TLS1.3-only configuration. See the following test report excerpt (for

ukings.ca) from the Qualys SSL Labs site:

III. DNSDB-Related Issues (tabs #3 and #4):

• DNSDB passive DNS queries currently run with default parameters and do NOT allow the analyst to

specify a specific RRtype, to specify a number of results, to time fence, to specify a bailiwick, etc.

• We currently have an RRnames tab and an Rdata IP tab, but no current Rdata Names tab. We might

consider adding an example tab that looks at the name servers for the specified domain, etc.

• We don't do left hand or right hand wildcard searches of domain delegation points.

• We don't do any IP neighborhood searches (e.g., we currently get the IP whois, but fail to search the

encompassing network block)

• We don't currently do any Flexible Searches.

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

62

• Sample DNSDB filtering is hardcoded into source as a placeholder, rather than being user

accessible/tailorable.

• Results are always sorted by time_last_seen descending. Other sort orders options might be useful

(such as by count descending).

IV. Whois-Related Issues (tabs #5, #6 and #7):

• Referrals may not always work. It may be necessary to direct queries specifically to the appropriate

regional registry in some cases.

• The Domain Whois and IP Whois output doesn't include point of contact information for resources.

• The pretty-printed JSON of tabs #5 and #6 looks "stark" in comparison to the ARIN ASN Whois tab (#7)

• An XML library that would accept ARIN using https instead of http (as strictly required for thee style

sheet http[s]://whois.arin.net/xsl/website.xsl) would eliminate the need to download and

cache a local copy of that file.

• Specifying ASNs in "AS"+integer form will sometimes fail. We currently routinely try the ASN Whois

queries without the leading AS prefix as a result.

• It may be worth checking RADB for routing information as well as the regional registries.

V. AS Prefixes (tab #8)

• IPv4 and IPv6 prefixes are comingled post-sort. It would be preferable to have separately sorted IPv4

and IPv6 prefixes.

• It would be desirable to indent more specific routes when covering routes are also announced.

• Being able to click on prefixes to pivot to that prefix would likely be handy.

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

63

VI. Geolocation Map (tab #9)

• Two projections are currently enabled, allowing a US view or a world view, but we suspect that

Europeans would likely appreciate a more geographically-appropriate projection, ditto Asians, South

Americans, Afrcans, Australians/New Zealanders, etc.

• Selection of one projection or another is ad hoc at best, based on approximate lat/lon map coverage.

• Label the location with the domain name, IP or city name (currently there's just a dot)

• The outline map is currently rather stark. Maybe use a satellite picture instead?

• Geolocation looks "wrong" (even though it's right) if a CDN or cloud provider is in use (e.g., an East

Coast US School may show up in California or Seattle due to use of a CDN or cloud provider).

Explicitly annotate that CDN or cloud provider status as part of the map marginalia?

VII. Network Graph (tab #10)

• Labeling the graph is a challenge since labels may be short and sweet (perhaps just a brief IP address

such as 8.8.8.8) or painfully long (such as a multi-record IPv6 record entry.

• The current graph is really just a proof-of-concept and isn't very exciting since the graph always has a

common origin e.g., the queried FQDN (in some stable cases, the graph may just be a two or three

node graph). Augmenting the basic RRname query data that's currently feeding the graph with data

from "canned pivots" would likely make the graphs more visually appealing.

• Being able to drag-and-drop or manipulate nodes would likely be well received, ditto the ability to "dig

in" on potentially interesting nodes.

• When testing with www.stanford.edu, the network graph is effectively unusable due to the large

number of unique RRsets associated with that RRname. The result ends up looking like a bullseye...

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

64

VIII. Totally New Functionality (Potential Additional Tabs)

Note: currently the window just gets wider and wider as additional tabs are added. It would be ideal if a

row of tabs could be "scrolled", or tabs could be stacked. If that's not possible, it might be necessarily to

have a hierarchical "notebook of notebooks." Notwithstanding that constraint, some potential additional

tabs might include:

• Collect and report affiliate tags and cookies.

• Alexa rank, age and value for the domain

• Users currently submit a single site at a tme, which then runs synchronously through each step.

Imagine an alternative "batch mode" where the user could submit a file full of URLs for processing,

and then browse through a stack of completed runs at their leisure.

• Characterize the domain or IP. Is it a:

o CDN?

o End User Dynamic IP address?

o End User Dynamic domain name?

o Free email domain?

o Known sinkhole IP?

o Parked domain?

o Tor endpoint?

• Domain and/or IP reputation reporting (is a given domain or IP on any blocklists, allowlists, etc.)?

Evidence of any problematic content? Spam? Malware hits? Phishing hits?

• Collect and check hashes for all graphics in an effort to find commonalities with other pages or to

identify known problematic content.

• Identify language of home page; automatically translate to a preferred language if not currently in

that language.

• Nmap results for domain's IP (note: active reconnaissance may trigger technical or legal response)

• Tasks that create content for the various tabs currently run serially. Imagine parallelizing those tasks.

This should reduce the overall time-to-complete a given run.

• Persistent "Lab notebook" page allowing the user to document their analyses and observations.

• SSL/TLS certificate retrieval and potential pivoting.

• Traffic volume over time

• Wayback Machine: does the site look the same as it used to? Imagine a page that would link to

appropriate archive.org pages, including some statistical measure of visual similarity.

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

65

APPENDICIES

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

66

APPENDIX I. INSTALLATION

(1) Unpack the bang_question.tar.gz compressed tar file you've downloaded:

 $ tar xfvz bang_question.tar.gz

(2) cd into the bang_question directory created in the previous step:

 $ cd bang_question

(3) Install required prerequisite Python3 libraries with pip3:

 $ /usr/local/bin/pip3 install --user .

 Note the trailing space and dot on that command!

(4) Install Chromium:

 $ pyppeteer-install

(5) Make a directory called ~/.bang_question_files

 $ mkdir ~/.bang_question_files

 Note the squiggle slash dot before bang!

(6) Copy exclamationquestion.gif to the ~/.bang_question_files/ directory:

 $ cp exclamationquestion.gif ~/.bang_question_files/

(7) Using wget (or a web browser of your choice) download and save a copy of

https://whois.arin.net/xsl/website.xsl

 $ wget "https://whois.arin.net/xsl/website.xsl"

 Copy that file to the ~/.bang_question_files/ directory:

 $ cp website.xsl ~/.bang_questions/

(8) (a) Download a recent Routing Information Base file from Oregon Routeviews:

 $ pyasn_util_download.py --latest

 That will download a file such as rib.20210104.2200.bz2

(b) Convert that file to the "ipasn_db_file" file we actually need with:

 $ pyasn_util_convert.py --single rib.20210104.2200.bz2 my_ip2asn_db_file

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

67

Obviously, substitute the name of the actual RIB file you downloaded for the value shown here.

(c) Move my_ip2asn_db_file to ~/.bang_question_files/

 $ mv my_ip2asn_db_file ~/.bang_question_files/

(9) (a) Sign up for a free IP2location account at https://lite.ip2location.com/

(b) Download and unzip a copy of DB9LITEBINIPV6 (note that this is the *binary* IPv4 *AND* IPv6 format

database, notwithstanding the name!) from https://lite.ip2location.com/

(c) Move the downloaded and unzipped file IP2LOCATION-LITE-DB9.IPV6.BIN to the ~/.bang_question_files

 $ mv IP2LOCATION-LITE-DB9.IPV6.BIN ~/.bang_question_files

NOTE: this file may unpack into IP2LOCATION-LITE-DB9.IPV6.BIN/IP2LOCATION-LITE-DB9.IPV6.BIN -- you only

want to move the FILE, NOT the file AND the directory by the same name, to the new target location!

(10) While in the subdirectory with the bang_question.py file, create an alias pointing at bang_question.py:

 $ alias bang_question=`pwd`/bang_question.py

You can then simply say:

 $ bang_question

to run the application. If you just type:

 $ alias

you'll see the alias you've defined for bang_question. For example:

 $ alias
 alias bang_question='/Users/joe/bang_question/bang_question.py'

You may want to add the value you see for your installation to your ~/.bash_profile (or similar startup file)

to make your alias persistent.

(11) Access to DNSDB API is controlled by an API key. Our code looks for your key in ~/.dnsdb-apikey.txt

(note the leading dot on that file name!)

When creating that file, just put the key in the file (no quotes or other prefatory content is required).

If you need to arrange to get a DNSDB API key, see:

• https://www.farsightsecurity.com/dnsdb-community-edition/

• https://www.farsightsecurity.com/trial-api/

• https://www.farsightsecurity.com/order-form/

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

68

APPENDIX II. SOURCE CODE FOR THE FULL PROOF-OF-CONCEPT APPLICATION

$ cat setup.py
from setuptools import setup

setup(
 name="bang_question",
 version="0.1",
 description="Proof-of-concept cyber investigative framework",
 author="Joe St Sauver",
 author_email="stsauver@fsi.io",
 scripts=['bin/bang_question'],
 install_requires=[
 'dnspython',
 'ipwhois',
 'ip2location',
 'kaleido',
 'lxml',
 'numpy',
 'pandas',
 'Pillow',
 'plotly-express',
 'pyasn',
 'pycurl',
 'PyMuPDF',
 'pyppeteer2',
 'python-igraph',
 'requests',
 'whois',
],
 license="Apache Software License",
 packages=setuptools.find_packages(),
 classifiers=[
 "License :: OSI Approved :: Apache Software License",
 "Programming Language :: Python :: 3.9",
],
 python_requires='>=3.9.1',
)

$ cat bang_question.py
#!/usr/local/bin/python3
you MUST install Python 3.9.1 (or later) on macOS Big Sur
(see https://www.python.org/downloads/release/python-391/)

import asyncio
import errno
import json
import os
from pathlib import Path
import socket
import sys

from datetime import datetime
import datetime

import tkinter as tk
from tkinter import NW, TOP, LEFT, END

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

69

from tkinter.messagebox import *

from tkinter.ttk import *
import tkinter.ttk as ttk

import PIL
from PIL import Image, ImageTk

https://pypi.org/project/pyppeteer2/
https://miyakogi.github.io/pyppeteer/reference.html
One time, download Chromium: $ pyppeteer-install
from pyppeteer import *

This site or product includes IP2Location LITE data available
from https://lite.ip2location.com
We assume that a local copy of IP2LOCATION-LITE-DB9.IPV6.BIN
has been downloaded and installed. (That file is for both V4 & V6)
import IP2Location

import plotly.express as px
import kaleido

import pandas as pd

import pyasn

from ipwhois import IPWhois

https://github.com/DannyCork/python-whois
import whois

https://pypi.org/project/PyMuPDF/
https://pymupdf.readthedocs.io/en/latest/
import fitz

make sure you don't include the .py as part of the name of the imports
from scrapePage import scrapeAFQDN
from asnWhois import myAsnWhois
from dnsdbRun import doQuery
from draw_network_graph import draw_the_graph

################################# Globals ###################################

global root, mywindow, mynotebook, mymenubarbox, mymenubarlabel, my_log_box
global fqdn, FQDN, myip, buttona, buttonb, buttonc, mymapname9
global t1, t2, t3, t4, t5, t6, t7, t8, t9, t10
global background2, img4, t10img

################################ Functions ##################################

https://stackoverflow.com/questions/56043767/show-large-image-using-scrollbar-in-
python/56043976
class ScrollableImage(tk.Frame):
 def __init__(self, master=None, **kw):
 self.image = kw.pop('image', None)
 sw = kw.pop('scrollbarwidth', 10)
 super(ScrollableImage, self).__init__(master=master, **kw)
 self.cnvs = tk.Canvas(self, highlightthickness=0, **kw)
 self.cnvs.create_image(0, 0, anchor='nw', image=self.image)

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

70

 # Vertical and Horizontal scrollbars
 self.v_scroll = tk.Scrollbar(self, orient='vertical', width=sw)
 self.h_scroll = tk.Scrollbar(self, orient='horizontal', width=sw)
 # Grid and configure weight.
 self.cnvs.grid(row=0, column=0, sticky='nsew')
 self.h_scroll.grid(row=1, column=0, sticky='ew')
 self.v_scroll.grid(row=0, column=1, sticky='ns')
 self.rowconfigure(0, weight=1)
 self.columnconfigure(0, weight=1)
 # Set the scrollbars to the canvas
 self.cnvs.config(xscrollcommand=self.h_scroll.set,
 yscrollcommand=self.v_scroll.set)
 # Set canvas view to the scrollbars
 self.v_scroll.config(command=self.cnvs.yview)
 self.h_scroll.config(command=self.cnvs.xview)
 # Assign the region to be scrolled
 self.cnvs.config(scrollregion=self.cnvs.bbox('all'))
 self.cnvs.bind_class(self.cnvs, "<MouseWheel>", self.mouse_scroll)

 def mouse_scroll(self, evt):
 if evt.state == 0 :
 self.cnvs.yview_scroll(-1*(evt.delta), 'units') # For MacOS
 self.cnvs.yview_scroll(int(-1*(evt.delta/120)), 'units') # For windows
 if evt.state == 1:
 self.cnvs.xview_scroll(-1*(evt.delta), 'units') # For MacOS
 self.cnvs.xview_scroll(int(-1*(evt.delta/120)), 'units') # For windows

Callback for submit button
def funca(event=None):
 global fqdn, mymapname9, myip, my_log_box
 global background2, img, img2, img4, t10img
 global t1, t2, t3, t4, t5, t6, t7, t8, t9, t10

 # we log events as we have them to report...
 # clear any existing log entries
 my_log_box.delete('1.0', END)

 my_log_box.insert(tk.END, "New run initiated\n")
 my_log_box.update()

 # callback for Submit button -- FQDN field should be filled in now
 fqdn = FQDN.get()

 my_log_box.insert(tk.END, "The FQDN entered was "+fqdn+"\n")
 my_log_box.update()

 # --

 my_log_box.insert(tk.END, "About to do screen grab of FQDN...\n")
 my_log_box.update()

 # check the supplied domain, and try to grab a copy of the specified page
 mypage = asyncio.get_event_loop().run_until_complete\
 (scrapeAFQDN(fqdn, my_log_box, "url"))

 # there was a problem scraping the page
 if (str(mypage) == "1"):
 return(1)

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

71

 my_log_box.insert(tk.END, " Screen grab done. Grabbed page is\n "+\
 str(mypage)+"\n")
 my_log_box.update()

 try:
 t2.destroy()
 except:
 pass

 t2 = tk.Frame()
 mynotebook.add(t2, text="Screen Grab")
 img2 = ImageTk.PhotoImage(Image.open(mypage))
 image_window = ScrollableImage(t2, image=img2,
 width=800, height=600)
 image_window.pack(anchor=NW)
 image_window.update()

 my_log_box.insert(tk.END, " Screen grab added to tab.\n")
 my_log_box.update()

 # --

 my_log_box.insert(tk.END, "Running DNSDB RRname query now...\n")
 my_log_box.update()

 my_fqdn_results_json = doQuery(fqdn, "full")

 try:
 t3.destroy()
 except:
 pass

 t3 = tk.Frame()
 mynotebook.add(t3, text="DNSDB RRnames")

 # Text Widget height and width are in characters
 mytext_widget_pdns = tk.Text(t3,height=40,width=132)
 mytext_widget_pdns.pack(side=TOP, anchor=NW)
 mytext_widget_pdns.update()

 mytext_widget_pdns.insert(tk.END, my_fqdn_results_json)
 my_log_box.insert(tk.END, " Passive DNS results added to tab.\n")
 my_log_box.update()

 # --

 my_log_box.insert(tk.END, "Running DNSDB Rdata IP query now...\n")
 my_log_box.update()

 myip = socket.gethostbyname(fqdn)
 my_ip_results_json = doQuery(myip, "RdataIP")

 try:
 t4.destroy()
 except:
 pass

 t4 = tk.Frame()
 mynotebook.add(t4, text="DNSDB IP Rdata")

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

72

 # Text Widget height and width are in characters
 mytext_widget_pdns_2 = tk.Text(t4,height=40,width=132)
 mytext_widget_pdns_2.pack(side=TOP, anchor=NW)
 mytext_widget_pdns_2.update()

 mytext_widget_pdns_2.insert(tk.END, my_ip_results_json)
 my_log_box.insert(tk.END, " Passive DNS Rdata IP results added to tab.\n")
 my_log_box.update()

 # --

 my_log_box.insert(tk.END, "Now working on Domain WHOIS...\n")
 my_log_box.update()

 domain = whois.query(fqdn)
 domain_json = json.dumps(domain.__dict__, indent=4, default=str)

 try:
 t5.destroy()
 except:
 pass

 t5 = tk.Frame()
 mynotebook.add(t5, text="DomWhois")
 mytext_widget_5 = tk.Text(t5,height=40,width=132)
 mytext_widget_5.pack(side=TOP, anchor=NW)
 mytext_widget_5.insert(tk.END, domain_json)

 my_log_box.insert(tk.END, " Domain WHOIS results added to tab.\n")
 my_log_box.update()

 # --

 my_log_box.insert(tk.END, "Now working on IP WHOIS...\n")
 my_log_box.update()

 myip = socket.gethostbyname(fqdn)
 obj = IPWhois(myip)
 res=obj.lookup_whois(get_referral=True)
 pretty_printed_text = json.dumps(res, indent=4)

 try:
 t6.destroy()
 except:
 pass

 t6 = tk.Frame()
 mynotebook.add(t6, text="IPWhois")
 mytext_widget_6 = tk.Text(t6,height=40,width=132)
 mytext_widget_6.pack(side=TOP, anchor=NW)
 mytext_widget_6.insert(tk.END, pretty_printed_text)

 my_log_box.insert(tk.END, " IP WHOIS results added to tab.\n")
 my_log_box.update()

 # --

 # get the basic ASN whois info

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

73

 my_log_box.insert(tk.END, "Now working on ASN WHOIS results...\n")
 my_log_box.update()

 # scraping the ASN Whois
 my_asn_info_file = myAsnWhois(fqdn)
 myasnpage = asyncio.get_event_loop().run_until_complete\
 (scrapeAFQDN(my_asn_info_file, my_log_box, "file"))

 try:
 t7.destroy()
 except:
 pass

 t7 = tk.Frame()
 mynotebook.add(t7, text="ASNWhois")
 asnimg7 = ImageTk.PhotoImage(Image.open(myasnpage))
 image_window = ScrollableImage(t7, image=asnimg7,
 width=1000, height=600)
 image_window.pack(anchor=NW)
 image_window.update()

 my_log_box.insert(tk.END, " ASN Whois info added to tab."+"\n")
 my_log_box.update()

 # --

 my_log_box.insert(tk.END, "Now working on Adding prefixes...\n")
 my_log_box.update()

 # we need the ASN for some of the filenames, so we'll get that first
 myip2asnfilspec = str(Path.home()) + "/.bang_question_files/" + \
 "my_ip2asn_db_file"
 asndb = pyasn.pyasn(myip2asnfilspec)
 asn = asndb.lookup(myip)

 # get the prefixes associated with the ASN
 prefixes = asndb.get_as_prefixes(asn[0])
 prefixes = sorted(prefixes)

 combined_text=""
 for pre in prefixes:
 combined_text=combined_text+"\n"+pre

 try:
 t8.destroy()
 except:
 pass

 t8 = tk.Frame()
 mynotebook.add(t8, text="Prefixes")
 mytext_widget_8_prefixes = tk.Text(t8,height=40,width=132)
 mytext_widget_8_prefixes.pack(side=TOP, anchor=NW)
 mytext_widget_8_prefixes.insert(tk.END, "AS"+str(asn[0])+" Prefixes:\n")
 mytext_widget_8_prefixes.insert(tk.END, combined_text)

 my_log_box.insert(tk.END, " ASN Prefixes added to tab.\n")
 my_log_box.update()

 # --

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

74

 my_log_box.insert(tk.END, "Now working on geolocation..\n")
 my_log_box.update()

 home = str(Path.home())
 subdir9 = "geolocation-maps"
 myfilename9 = fqdn
 utcdatetime9 = datetime.datetime.utcnow().isoformat() + 'Z'
 myextension9 = "jpeg"
 mymapextension9 = "png"
 mydir9 = home + "/" + subdir9
 fullfilenamepart9 = fqdn + "_" + utcdatetime9 + "." + myextension9
 latestversion9 = fqdn + "_" + "latest" + "." + myextension9
 mymapname9 = mydir9 + "/" + fqdn + "_" + utcdatetime9 + "." + \
 mymapextension9
 myfilespec9 = mydir9 + "/" + fullfilenamepart9

 # ensure the directory exists
 try:
 os.makedirs(mydir9)
 except OSError as e:
 if e.errno != errno.EEXIST:
 raise
 try:
 open(myfilespec9, 'a').close()
 except:
 raise

 try:
 open(mymapname9, 'a').close()
 except:
 raise

 geoipfilespec = str(Path.home()) + "/.bang_question_files/" + \
 "IP2LOCATION-LITE-DB9.IPV6.BIN"
 database = IP2Location.IP2Location(geoipfilespec, "SHARED_MEMORY")
 rec = database.get_all(myip)
 lat = rec.latitude
 lon = rec.longitude
 cit = rec.city

 # map it (we need to make it into a DataFrame first
 d=[{"txt":cit,"lat":lat,"lon":lon,"siz":10}]
 df=pd.DataFrame(d,columns=["txt","lat","lon","siz"])

 if ((lon >= -180) and (lon <= -52) and
 (lat >= 36) and (lat <= 83)):
 fig=px.scatter_geo(df,lat="lat",lon="lon",text="txt",\
 size="siz",projection="albers usa",width=800,height=600)
 else:
 fig=px.scatter_geo(df,lat="lat",lon="lon",text="txt",\
 size="siz",projection="mercator",width=800,height=600)

 fig.write_image(mymapname9)

 # ensure the image is appropriately sized
 map_img=Image.open(mymapname9).resize((800, 600),Image.ANTIALIAS)
 map_img.load()

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

75

 # BUG: https://stackoverflow.com/questions/42099914/imagetk-photoimage-doesnt-show-
up-on-osx-but-does-on-windows
 # See https://stackoverflow.com/questions/41576637/are-rgba-pngs-unsupported-in-
python-3-5-pillow
 # See Yuji Tomita's post at https://stackoverflow.com/questions/9166400/convert-rgba-
png-to-rgb-with-pil
 background2 = Image.new("RGB", map_img.size, (255,255,255))
 background2.paste(map_img, mask=map_img.split()[3]) # 3 is the alpha channel
 background2.save(myfilespec9, 'JPEG', quality=80)
 img4 = ImageTk.PhotoImage(background2)

 try:
 t9.destroy()
 except:
 pass

 t9 = tk.Frame()
 mynotebook.add(t9, text="GeoIP")
 panel2 = tk.Label(t9, image=img4)
 panel2.pack(side=TOP, anchor=NW)
 mynotebook.add(t9)

 my_log_box.insert(tk.END, " Geolocation map added to tab.\n")
 my_log_box.update()

 # --

 my_log_box.insert(tk.END, "Working on network graph...\n")
 my_log_box.update()

 subdir10 = "network-graphs"
 myfilename10 = fqdn
 utcdatetime10 = datetime.datetime.utcnow().isoformat() + 'Z'
 myextension10 = "pdf"
 mydir10 = home + "/" + subdir9
 fullfilenamepart10 = fqdn + "_" + utcdatetime10 + "." + myextension10
 myfilespec10 = mydir10 + "/" + fullfilenamepart10
 latestversion10 = fqdn + "_" + "latest" + "." + myextension10

 # ensure the directory exists
 try:
 os.makedirs(mydir10)
 except OSError as e:
 if e.errno != errno.EEXIST:
 raise

 try:
 open(myfilespec10, 'a').close()
 except:
 raise

 draw_the_graph(doQuery(fqdn, "limited"), myfilespec10)
 doc=fitz.open(myfilespec10)
 page=doc.loadPage(0)
 pix=page.getPixmap()
 mode="RGB"

 try:
 t10.destroy()

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

76

 except:
 pass

 t10 = tk.Frame()
 mynotebook.add(t10, text="Graph")
 t10img=Image.frombytes(mode,[pix.width, pix.height], pix.samples)
 t10tkimg=ImageTk.PhotoImage(t10img)
 t10_image_window = ScrollableImage(t10, image=t10tkimg,
 width=800, height=600)
 t10_image_window.pack(anchor=NW)

 my_log_box.insert(tk.END, " Network graph added to tab.\n")
 my_log_box.update()

 my_log_box.insert(tk.END, "--DONE--\n")
 my_log_box.update()

def cleanup_tab(tab_to_cleanup):
 try:
 tab_to_cleanup.destroy()
 except:
 pass

def funcb(event=None):
 global FQDN, my_log_box
 global t1, t2, t3, t4, t5, t6, t7, t8, t9, t10

 FQDN.delete(0, 'end')

 my_log_box.delete('1.0', END)
 my_log_box.update()

 # we intentionally clean these up in reverse order and leave t1 alone
 my_tabs = [t10, t9, t8, t7, t6, t5, t4, t3, t2]
 for i in my_tabs:
 cleanup_tab(i)

Callback for quit button
def funcc(event=None):
 sys.exit()

#################################### MAIN #####################################

def main():
 root = tk.Tk()
 root.title("bang_question")
 iconfilespec = str(Path.home()) + "/.bang_question_files/" + \
 "exclamationquestion.gif"
 root.tk.call('wm','iconphoto',root._w,ImageTk.PhotoImage(file=iconfilespec))
 s = ttk.Style()
 s.configure('TNotebook', tabposition='nw')
 s.theme_use('clam')
 root.bind('<Return>', funca)
 mywindow = tk.Frame(root)

 # create notebook
 global mynotebook
 mynotebook = ttk.Notebook(mywindow)
 mynotebook.pack(side=TOP, anchor=NW)

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

77

 t1 = tk.Frame()
 mynotebook.add(t1, text="MAIN")

 # build menu box
 mymenubarbox = ttk.Frame(t1)
 mymenubarbox.pack(side=TOP, anchor=NW)
 mymenubarlabel = ttk.Label(mymenubarbox, text=" Enter FQDN:")
 mymenubarlabel.pack(side=LEFT)
 global FQDN
 FQDN = ttk.Entry(mymenubarbox)
 FQDN.pack(side=LEFT)
 buttona = tk.Button(mymenubarbox, text='Submit', command = funca)
 buttona.pack(side=LEFT)
 buttonb = tk.Button(mymenubarbox, text='Clear', command = funcb)
 buttonb.pack(side=LEFT)
 buttonc = tk.Button(mymenubarbox, text='Quit', command = funcc)
 buttonc.pack(side=LEFT)
 mymenubarbox.pack(side=TOP, anchor=NW)

 # build log box
 global my_log_box
 my_log_box = tk.Text(t1,height=40,width=132)
 my_log_box.pack(side=TOP, anchor=NW)

 # add tab #1 to notebook
 mynotebook.add(t1, text="MAIN")
 mynotebook.pack(side=TOP, anchor=NW, expand=True)

 mywindow.pack(side=TOP, anchor=NW)
 mywindow.mainloop()

if __name__ == "__main__":
 # execute only if run as a script
 main()

$ cat asnWhois.py
import datetime
import errno
import socket
import os
from pathlib import Path
import dns.resolver
from lxml import etree
import requests

def confirmDirExists(mydir):
 try:
 os.makedirs(mydir)
 except OSError as e:
 if e.errno != errno.EEXIST:
 raise

def confirmFileExists(myfilespec):
 try:
 open(myfilespec, 'a').close()
 except:
 raise

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

78

def makeLink(myfilespec, mylatest):
 try:
 os.unlink(mylatest)
 except:
 pass
 os.symlink(myfilespec, mylatest)

def fqdnToIP(fqdn):
 myip = socket.gethostbyname(fqdn)
 return(myip)

def reverseIPforRouteviews(myip):
 reversed_ip = ".".join(reversed(myip.split('.')))+".asn.routeviews.org"
 return(reversed_ip)

def getASNfromRouteviews(reversed_ip):
 answers = dns.resolver.resolve(reversed_ip, 'TXT')
 split_answers=answers.response.answer[0].to_text().split(" ")
 myasn=split_answers[4]
 myasn=myasn.replace('"','')
 return(myasn)

def makeOutputFile(fqdn, outputfiletype):
 home = str(Path.home())
 subdir = "asnwhois_output"
 utcdatetime = datetime.datetime.utcnow().isoformat() + 'Z'

 if (outputfiletype == "raw"):
 myextension = "xml"
 elif (outputfiletype == "cooked"):
 myextension = "html"

 mydir = home + "/" + subdir
 # if on something non-Un*x-ish, remember os.path.join(dir, f)
 fullfilenamepart = fqdn + "_" + utcdatetime + "." + myextension
 latestversion = fqdn + "_" + "latest" + "." + myextension

 # esure the directory exists
 confirmDirExists(mydir)

 # ensure the timestamped file exists
 myfilespec = mydir + "/" + fullfilenamepart
 confirmFileExists(myfilespec)

 # set up a convenience link to the latest version
 mylatest = mydir + "/" + latestversion
 makeLink(myfilespec, mylatest)

 return(myfilespec)

def myAsnWhois(fqdn):
 # we need the IP of the FQDN to map to an ASN
 myip = fqdnToIP(fqdn)

 # get the domain we need to get the ASN from Routeviews
 reversed_ip = reverseIPforRouteviews(myip)

 # do IP-->ASN using Routeviews
 myasn = getASNfromRouteviews(reversed_ip)

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

79

 # Joint Whois Project allows all queries to go to a single
 # whois server which will redirect as appropriate, see
 # https://www.lacnic.net/1040/2/lacnic/lacnics-whois (we'll use ARIN)

 # now assemble the query URL
 myurl = "https://whois.arin.net/rest/asn/" + myasn + "/pft?s=" + myasn

 # create the output file to hold the ASN Whois Information
 myfilespec = makeOutputFile(fqdn, "raw")

 # If using requests instead of pycurl
 headers = {'Accept' : 'application/xml'}
 response = requests.get(myurl, headers=headers)

 # Throw an error for bad status codes
 response.raise_for_status()

 # if we want the response in unicode, use response.text below
 # if we want the response in bytes, use response.content instead

 # write the results to a file
 with open(myfilespec, "wb") as my_file:
 my_file.write(response.content)

 # IMPORTANT NOTE: we're using a saved copy of XSLT because ARIN shows
 # https://www.w3.org/1999/XSL/Transform BUT THERE SHOULD BE NO "s" there
 # (e.g., the URI MUST BE regular http not https). If this isn't fixed,
 # etree.XSLT will indicated that no stylesheet exists. A subtle bug...
 # FWIW, the Oxygen XML Editor immediately found the issue, very impressive!

 XSLT_file = str(Path.home()) + "/.bang_question_files/" + "./website.xsl"
 transform = etree.XSLT(etree.parse(XSLT_file))
 result = transform(etree.parse(myfilespec))
 my_transformed_results = etree.tostring(result, pretty_print=True)

 cooked_file = makeOutputFile(fqdn, "cooked")

 with open(cooked_file, "wb") as outfile:
 outfile.write(my_transformed_results)

 return(cooked_file)

$ cat dnsdbRun.py
from pathlib import Path
from io import BytesIO
import json
import re
import sys
from time import strftime, gmtime

import pycurl

See stackoverflow.com/questions/26924812/python-sort-list-of-json-by-value
def extract_time(myrecord):
 json_format=eval(myrecord)

 try:
 extracted_bit = json_format['obj']['time_last']

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

80

 except:
 extracted_bit = json_format['obj']['zone_time_last']

 return extracted_bit

def print_bits(myrecord):
 myformat = '%Y-%m-%d %H:%M:%S'
 myrecord_json_format = json.loads(myrecord)
 extract_bit = myrecord_json_format['obj']['rrname']

 extract_bit_2 = myrecord_json_format['obj']['rrtype']
 extract_bit_2 = str('{0:<5}'.format(extract_bit_2))

 temp_bit_3 = myrecord_json_format['obj']['rdata']
 extract_bit_3 = json.dumps(temp_bit_3)

 try:
 extract_tl = myrecord_json_format['obj']['time_last']
 except:
 extract_tl = myrecord_json_format['obj']['zone_time_last']

 tl_datetime = gmtime(extract_tl)
 enddatetime = strftime(myformat, tl_datetime)

 try:
 extract_tf = myrecord_json_format['obj']['time_first']
 except:
 extract_tf = myrecord_json_format['obj']['zone_time_first']

 tf_datetime = gmtime(extract_tf)
 startdatetime = strftime(myformat, tf_datetime)

 extract_count = myrecord_json_format['obj']['count']
 formatted_count = str('{:>11,d}'.format(extract_count))
 results = extract_bit + " " + extract_bit_2 + " \"" + enddatetime + \
 "\" \"" + startdatetime + "\" " + formatted_count + \
 " " + extract_bit_3

 if (results.find("SOA") == -1):
 return results
 else:
 return ""

def print_rdata_bits(myrecord):
 myformat = '%Y-%m-%d %H:%M:%S'
 myrecord_json_format = json.loads(myrecord)
 extract_bit = myrecord_json_format['obj']['rrname']
 extract_bit = str('{0:<50}'.format(extract_bit))

 extract_bit_2 = myrecord_json_format['obj']['rrtype']
 extract_bit_2 = str('{0:<5}'.format(extract_bit_2))

 temp_bit_3 = myrecord_json_format['obj']['rdata']
 extract_bit_3 = json.dumps(temp_bit_3)

 try:
 extract_tl = myrecord_json_format['obj']['time_last']
 except:
 extract_tl = myrecord_json_format['obj']['zone_time_last']

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

81

 tl_datetime = gmtime(extract_tl)
 enddatetime = strftime(myformat, tl_datetime)

 try:
 extract_tf = myrecord_json_format['obj']['time_first']
 except:
 extract_tf = myrecord_json_format['obj']['zone_time_first']

 tf_datetime = gmtime(extract_tf)
 startdatetime = strftime(myformat, tf_datetime)

 extract_count = myrecord_json_format['obj']['count']
 formatted_count = str('{:>11,d}'.format(extract_count))
 results = extract_bit + " " + extract_bit_2 + " \"" + enddatetime + \
 "\" \"" + startdatetime + "\" " + formatted_count + \
 " " + extract_bit_3

 unwanted_name_found = False
 unwanted_rrnames =
r'(.*\.verteiltesysteme.net\.$|.*\.eslared\.org\.ve\.$|.*\.usac\.edu\.gt\.$)'
 if re.match(unwanted_rrnames, extract_bit):
 unwanted_name_found = True

 if ((results.find("SOA") == -1) and (unwanted_name_found == False)):
 return results
 else:
 return ""

def print_limited_bits(myrecord):

 myrecord_json_format = json.loads(myrecord)
 extract_bit = myrecord_json_format['obj']['rrname']

 extract_bit_2 = myrecord_json_format['obj']['rrtype']
 # extract_bit_2 = str('{0:<5}'.format(extract_bit_2))

 temp_bit_3 = myrecord_json_format['obj']['rdata']
 extract_bit_3 = json.dumps(temp_bit_3)
 extract_bit_3 = extract_bit_3.replace(' ','')

 results = extract_bit + " " + extract_bit_2 + " " + extract_bit_3

 rrtypes = r'^(A|AAAA|CNAME|NS)$'

 if re.match(rrtypes,extract_bit_2):
 return results
 else:
 return ""

def make_query(fqdn, query_type):
 # get the DNSDB API key
 filepath = str(Path.home()) + "/.dnsdb-apikey.txt"
 with open(filepath) as stream:
 myapikey = stream.read().rstrip()

 if (query_type == "RRname"):
 url = "https://api.dnsdb.info/dnsdb/v2/lookup/rrset/name/" + fqdn
 elif (query_type == "RdataIP"):

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

82

 url = "https://api.dnsdb.info/dnsdb/v2/lookup/rdata/ip/" + fqdn
 elif (query_type == "RdataName"):
 url = "https://api.dnsdb.info/dnsdb/v2/lookup/rdata/name/" + fqdn

 requestHeader = []
 requestHeader.append('X-API-Key: ' + myapikey)
 requestHeader.append('Accept: application/jsonl')

 buffer = BytesIO()
 c = pycurl.Curl()
 c.setopt(pycurl.URL, url)
 c.setopt(pycurl.HTTPHEADER, requestHeader)
 c.setopt(pycurl.WRITEDATA, buffer)
 c.perform()
 rc = c.getinfo(c.RESPONSE_CODE)
 body = buffer.getvalue()
 content = body.decode('iso-8859-1')

 if rc == 200:
 return content
 else:
 return rc

def doQuery(fqdn, full_or_limited):

 if ((full_or_limited == "limited") or (full_or_limited == "full")):
 content = make_query(fqdn, "RRname")
 elif (full_or_limited == "RdataIP"):
 content = make_query(fqdn, "RdataIP")
 else:
 print("In dnsbRun.py (doQuery) ="+full_or_limited)
 sys.exit(0)

 try:
 test = int(content)
 print("Error making dnsdb query! Return code = "+str(test))
 sys.exit(0)
 except:
 sList = list(line for line in content.strip().split("\n"))

 # we want to dump the first line in that output
 # print ("sList[0]="+sList[0])
 if sList[0] == '{"cond":"begin"}':
 sList.pop(0)
 else:
 print("SOMETHING ODD HAPPENED POPPING THE FIRST ELEMENT")

 # print ("sList[-1]="+sList[-1])
 if ((sList[-1] == '{"cond":"succeeded"}') or
 (sList[-1] == '{"cond":"limited","msg":"Result limit reached"}')):
 sList.pop()
 else:
 print("SOMETHING ODD HAPPENED POPPING THE LAST ELEMENT")

 sList2 = sorted(sList, key=extract_time, reverse=True)

 formatted_output=""
 results=""
 for line in sList2:

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

83

 if (full_or_limited == "full"):
 results=print_bits(line)
 elif (full_or_limited == "limited"):
 results=print_limited_bits(line)
 elif (full_or_limited == "RdataIP"):
 results=print_rdata_bits(line)

 if results != "":
 result_with_nl=results+"\n"
 formatted_output=formatted_output+result_with_nl

 if len(formatted_output) == 0:
 formatted_output = "No results found\n"
 return(formatted_output)

$ cat draw_network_graph.py
import igraph
import numpy as np

def draw_the_graph(read_data, myfilespec10):
 record_count = read_data.count('\n')

 # Create a directed graph
 g = igraph.Graph(directed=True)

 # begin by creating the list of unique vertices
 mynodes = []
 source_nodes = []
 dest_nodes = []
 edge_types = []

 my_individual_lines = []
 my_individual_lines=read_data.split("\n")
 for i in range(0,record_count):
 fields=my_individual_lines[i].split(" ")
 if len(fields)==3:
 # remove spaces between rdata elements in fields[2]
 tempfield=fields[2]
 fields[2]=tempfield.replace(",", "\n")

 # add the node names to the list of vertices
 # a vertex can be either a source or destination node
 mynodes.append(fields[0])
 mynodes.append(fields[2])
 # drop any duplicate vertices
 mynodes = np.ndarray.tolist(np.unique(mynodes))

 # now let's build three lists: sources, destinations and edge_types
 source_nodes.append(fields[0])
 dest_nodes.append(fields[2])
 edge_types.append(fields[1])

 mynode_count=len(mynodes)

 g.add_vertices(mynode_count)

 # populate the vertex properties
 for i in range(0,mynode_count):
 g.vs[i]["id"] = i

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

84

 g.vs["name"] = mynodes[i]
 g.vs[i]["label"] = mynodes[i]

 # now let's create the edges
 for i in range(0,record_count):
 source=mynodes.index(source_nodes[i])
 dest= mynodes.index(dest_nodes[i])
 type= edge_types[i]
 g.add_edges([(source,dest)])
 g.es[i]["label"] = type
 g.es[i]["name"] = type
 g.es[i]["weight"] = 1

 visual_style = {}
 # Set bbox and margin
 visual_style["bbox"] = (800,800)
 visual_style["margin"] = 100

 # Set vertex colors and sizes
 visual_style["vertex_color"] = 'white'
 visual_style["vertex_size"] = 125

 # Set vertex lable size
 visual_style["vertex_label_size"] = 10

 # Don't curve the edges
 visual_style["edge_curved"] = False

 # Set the layout
 # my_layout = g.layout_kamada_kawai()
 # my_layout = g.layout_circle()
 # my_layout = g.layout_drl()
 # my_layout = g.layout_fruchterman_reingold()
 # lgl = "large graph layout"
 # my_layout = g.layout_lgl()
 # my_layout = g.layout_random()
 # my_layout = g.layout_reingold_tilford()
 my_layout = g.layout_reingold_tilford_circular()

 visual_style["layout"] = my_layout

 # Plot the graph
 igraph.plot(g, myfilespec10, **visual_style)

$ cat scrapePage.py
import asyncio
import datetime
import errno
import os
from pathlib import Path
import socket

https://pypi.org/project/pyppeteer2/
https://miyakogi.github.io/pyppeteer/reference.html
One time, download Chromium: $ pyppeteer-install
from pyppeteer import *

import tkinter as tk
from tkinter.messagebox import *

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

85

def display_error():
 tkinter.messagebox.showerror(message=\
 "Couldn't get FQDN.\nTypo in the FQDN entered?",
 title="Message Box", icon="error")

async def scrapeAFQDN(fqdn, my_log_box, url_or_file):
 # the snapshot goes to this filespec
 # if on something non-Un*x-ish, remember os.path.join(dir, f)
 my_log_box.insert(tk.END, "Making sure archive directory exists...\n")
 my_log_box.update()
 home = str(Path.home())
 subdir = "snapshots"
 myfilename = fqdn
 utcdatetime = datetime.datetime.utcnow().isoformat() + 'Z'
 myextension = "jpeg"
 mydir = home + "/" + subdir
 fullfilenamepart = fqdn + "_" + utcdatetime + "." + myextension
 latestversion = fqdn + "_" + "latest" + "." + myextension

 # ensure the directory exists
 try:
 os.makedirs(mydir)
 except OSError as e:
 if e.errno != errno.EEXIST:
 raise

 # ensure the timestamped file exists
 if (url_or_file == "url"):
 myfilespec = mydir + "/" + fullfilenamepart
 # ensure the directory exists
 try:
 os.makedirs(mydir)
 except OSError as e:
 if e.errno != errno.EEXIST:
 raise
 elif (url_or_file == "file"):
 myfilespec = fullfilenamepart
 try:
 open(myfilespec, 'a').close()
 except:
 raise

 my_log_box.insert(tk.END, "Confirming page is reachable on 443 or 80...\n")
 my_log_box.update()

 domain_resolve_ok = False
 if (url_or_file == "url"):
 # verify page exists, and figure out if https is supported
 try:
 # note: you do NOT need to explicitly permit inbound traffic
 # on macOS (even if it asks you to allow it!)
 myaddrinfo = socket.getaddrinfo(fqdn, 443)
 url = "https://"+fqdn
 domain_resolves_ok = True
 except socket.gaierror:
 # couldn't connect on default SSL/TLS port
 # fall back to regular http
 try:

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

86

 myaddrinfo = socket.getaddrinfo(fqdn, 80)
 url = "http://"+fqdn
 domain_resolves_ok = True
 except:
 # couldn't even connect on standard port
 display_error()
 return(1)
 elif (url_or_file == "file"):
 domain_resolves_ok = True
 url = "file://"+fqdn
 myfilespec = fqdn + ".jpeg"

 if domain_resolves_ok == True:
 browser = await launch({'headless': True, 'ignoreHTTPSErrors': True,\
 'defaultViewport': None, 'viewport_width': 800})
 context = await browser.createIncognitoBrowserContext()
 page = await browser.newPage()
 await page._client.send('Animation.disable')
 await page.goto(url)
 await page.screenshot({'path': myfilespec, 'type': 'jpeg', \
 'quality': 80, 'fullPage': True})
 await browser.close()

 # ensure the "latest" version is updated for this URL
 if (url_or_file == "url"):
 mylatest = mydir + "/" + latestversion
 # print("mylatest =" + mylatest)
 elif (url_or_file == "file"):
 mylatest = myfilespec + "_" + "latest" + "." + myextension
 try:
 os.unlink(mylatest)
 except:
 pass
 os.symlink(myfilespec, mylatest)

 return(myfilespec)

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

87

APPENDIX III. STANDARD LIBRARIES AND THIRD-PARTY PACKAGES

• asyncio28

• contextlib29

• datetime30

• errno31

• io32

• json33

• os34

• pathlib35

• re36

• socket37

• sys38

• time39

• dnspython:

o https://www.dnspython.org/

o https://dnspython.readthedocs.io/en/latest/index.html

• ipwhois was used for IP Whois queries:

o https://pypi.org/project/ipwhois/

o https://ipwhois.readthedocs.io/en/latest/

• IP2Location is our solution for geolocating IP addresses:

o https://www.ip2location.com/development-libraries/ip2location/python

o https://www.ip2location.com/free/applications

• XML processing is with lxml:

o https://pypi.org/project/lxml/

o https://lxml.de/

• We also used numpy to uniquify some data:

o https://pypi.org/project/numpy/

28 https://docs.python.org/3/library/asyncio.html
29 https://docs.python.org/3/library/contextlib.html
30 https://docs.python.org/3/library/datetime.html
31 https://docs.python.org/3/library/errno.html
32 https://docs.python.org/3/library/io.html
33 https://docs.python.org/3/library/json.html
34 https://docs.python.org/3/library/os.html
35 https://docs.python.org/3/library/pathlib.html
36 https://docs.python.org/3/library/re.html
37 https://docs.python.org/3/library/socket.html
38 https://docs.python.org/3/library/sys.html
39 https://docs.python.org/3/library/time.html

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

88

o https://numpy.org/

• We'll use Pillow (derived from the Python Image Library, or "PIL") to convert and resize images:

o https://pypi.org/project/Pillow/

o https://pillow.readthedocs.io/en/stable/

• plotly.express (with pandas and kaleido) will be used for making maps:

o https://pypi.org/project/plotly-express/

o https://plotly.com/python/plotly-express/

o https://pypi.org/project/pandas/

o https://pandas.pydata.org/pandas-docs/stable/

o https://pypi.org/project/kaleido/

• ASN Prefixes will be obtained via pyasn:

o https://pypi.org/project/pyasn/

o https://github.com/hadiasghari/pyasn

• We'll retrieve web pages using pycurl and Requests:

o https://pypi.org/project/pycurl/

o http://pycurl.io/

o https://pypi.org/project/requests/

o https://requests.readthedocs.io/en/master/

• PyMuPDF ("fitz") is the package we'll use for displaying PDFs:

o https://pypi.org/project/PyMuPDF/

o https://readthedocs.org/projects/pymupdf/

• We'll save graphical copies of web sites using Pyppeteer (the Python version of Puppeteer):

o Get the library: https://pypi.org/project/pyppeteer2/

o https://miyakogi.github.io/pyppeteer/reference.html

• The network graph gets built with python-igraph

o https://igraph.org/python/

• We'll use Tkinter (tk) for our GUI environment

o Tkinter is bundled with Python installed from https://www.python.org/downloads/

o Documentation: https://docs.python.org/3/library/tk.html

o https://docs.python.org/3/library/tkinter.ttk.html

• Danny Cork's whois is our pick for Domain Whois queries:

o https://pypi.org/project/whois/

o https://github.com/DannyCork/python-whois

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

89

APPENDIX IV. LICENSES AND ACKNOWLEDGEMENTS

• Python: PSF License

https://docs.python.org/3/license.html

• dnspython: ISC License

https://github.com/rthalley/dnspython/blob/master/LICENSE

• igraph: GNU GPL 2 or later License

https://igraph.org/python/#contribute

• ipwhois: BSD License

https://pypi.org/project/ipwhois/

• IP2Location: https://lite.ip2location.com/terms-of-use

"This site or product includes IP2Location LITE data available from https://lite.ip2location.com."

• kaleido: MIT License

https://pypi.org/project/kaleido/

• lxml: BSD License

https://pypi.org/project/lxml/

• numpy: BSD License

https://pypi.org/project/numpy/

• pandas: 3-clause ("Simplified" or "New") BSD license

• Pillow: "OSI Approved :: Historical Permission Notice and Disclaimer (HPND)"

https://pypi.org/project/Pillow/

• plotly.express: MIT License

https://github.com/plotly/plotly_express/blob/master/LICENSE.txt

• pyasn: "OSI Approved :: MIT License"

https://pypi.org/project/pyasn/

• pycurl: "LGPL and an MIT/X derivative license based on the cURL license."

http://pycurl.io/

• PyMuPDF: "GNU Affero General Public License v3 or later (AGPLv3+), GNU General Public License v3 or

later (GPLv3+)"

https://pypi.org/project/PyMuPDF/

• Pyppeteer: MIT License

• requests: Apache2 License

https://2.python-requests.org/en/v2.7.0/user/intro/

• Tkinter: Python License

https://en.wikipedia.org/wiki/Tkinter

• whois: MIT License

https://pypi.org/project/whois/

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

90

APPENDIX V. SCHOOL WEB PAGES REVIEWED FOR HEIGHT MEASUREMENT PURPOSES

School URL Image Size Comments

1. Arizona State University www.asu.edu 800 x 2070 Captures as a blank page

2. Bowdoin www.bowdoin.edu 800 x 5696

3. Brown www.brown.edu 800 x 8110

4. BYU www.byu.edu 800 x 2851

5. Cal Tech www.caltech.edu 816 x 4072

6. Carleton www.carleton.edu 800 x 3278 Didn't capture cleanly

7. Carnegie Mellon www.cmu.edu 800 x 5368

8. Citadel www.citadel.edu 800 x 4194

9. Clemson www.clemson.edu 800 x 8357 Didn't capture cleanly

10. Colby www.colby.edu 800 x 1711 Didn't capture cleanly

11. Columbia www.columbia.edu 800 x 7202

12. Cornell www.cornell.edu 800 x 3665

13. Dartmouth www.dartmouth.edu 800 x 3718

14. Duke www.duke.edu 800 x 4962

15. Eastern Oregon University www.eou.edu 800 x 4360

16. Emory www.emory.edu 800 x 11159

17. Florida International University www.fiu.edu 800 x 5827

18. Georgetown www.georgetown.edu 800 x 9246

19. George Washington University www.gwu.edu 816 x 7093

20. Georgia Tech www.gatech.edu 800 x 4529

21. Harvard www.harvard.edu 800 x 3467

22. Harvey Mudd College www.hmc.edu 800 x 3315

23. Indiana University Bloomington www.indiana.edu 800 x 4712

24. Johns Hopkins www.jhu.edu 800 x 6804 Didn't capture cleanly

25. Lewis and Clark www.lclark.edu 1050 x 2261

26. LSU www.lsu.edu 850 x 4313

27. MIT www.mit.edu 800 x 2263

28. Montana State University www.montana.edu 800 x 3379

29. New York University www.nyu.edu 800 x 1594

30. Northwestern www.northwestern.edu 800 x 7290

31. Norwich www.norwich.edu 800 x 5905

32. Notre Dame www.nd.edu 800 x 6182

33. Ohio State University www.osu.edu n/a Failure: Redirection loop

34. Oregon Health and Science University www.ohsu.edu 800 x 3863

35. Oregon Institute of Technology www.oit.edu 800 x 5333

36. Oregon State University www.oregonstate.edu 800 x 6903

37. Penn State www.psu.edu 800 x 7810 Didn't capture cleanly

38. Pomona www.pomona.edu 800 x 2023

39. Portland State www.pdx.edu 800 x 6471

40. Princeton www.princeton.edu 800 x 6312

41. Reed www.reed.edu 800 x 5277

42. Rice www.rice.edu 800 x 7688

43. RPI www.rpi.edu 800 x 5536

44. Sewanee www.sewanee.edu 800 x 600 Didn't capture cleanly

45. Southern Oregon University www.sou.edu 800 x 7412 Didn't capture cleanly

46. St. Olaf www.stolaf.edu 1600 x 1200 Didn't capture cleanly

47. Stanford www.stanford.edu 800 x 10769 Didn't capture cleanly

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

91

48. Texas A&M University www.tamu.edu 800 x 3485

49. Tufts www.tufts.edu 816 x 4813

50. West Point www.westpoint.edu 800 x 7451

51. Western Oregon University www.wou.edu 800 x 6972

52. University of Alabama www.ua.edu 800 x 11071 Didn't capture cleanly

53. University of Alaska at Fairbanks www.uaf.edu 800 x 5033

54. University of Arizona www.arizona.edu 800 x 5576

55. University of Arkansas www.uark.edu 800 x 3766

56. University of California Berkeley www.berkeley.edu 800 x 2647

57. University of California Los Angeles www.ucla.edu 800 x 2559

58. University of California San Diego www.ucsd.edu 800 x 8393

59. University of Chicago www.uchicago.edu 800 x 3391

60. University of Colorado at Boulder www.colorado.edu 800 x 6836

61. University of Florida www.ufl.edu 800 x 3472

62. University of Georgia www.uga.edu 800 x 4581

63. University of Hawaii-Manoa www.hawaii.edu 800 x 5013

64. University of Idaho www.uidaho.edu 800 x 3084

65. University of Illinois-Urbana Champaign www.uiuc.edu 800 x 3507

66. University of Iowa www.uiowa.edu 800 x 6772

67. University of Kansas www.ku.edu 800 x 5662

68. University of Maryland www.umd.edu 800 x 3081 Didn't capture cleanly

69. University of Michigan www.umich.edu 800 x 5975

70. University of Minnesota at Minneapolis www.umn.edu 800 x 6450

71. University of Mississippi olemiss.edu 800 x 2036 Captures as a blank page

72. University of Nebraska at Lincoln www.unl.edu 800 x 5438

73. University of North Carolina at Chapel Hill www.unc.edu 800 x 5598

74. University of North Dakota www.und.edu 800 x 6641

75. University of North Georgia www.ung.edu 800 x 4477

76. University of Oklahoma www.ou.edu 980 x 2017

77. University of Oregon www.uoregon.edu 800 x 11461

78. University of Pennsylvania www.upenn.edu 800 x 3088

79. University of Pittsburgh www.pitt.edu 800 x 4723

80. University of Tennessee at Knoxville www.utk.edu 800 x 3442

81. University of Texas at Austin www.utexas.edu 800 x 11110 Didn't capture cleanly

82. University of Utah www.utah.edu 800 x 5617

83. University of Virginia www.virginia.edu 800 x 5033

84. University of Washington www.washington.edu 800 x 2978

85. University of Wisconsin at Madison www.wisc.edu 800 x 4337

86. USC www.usc.edu 800 x 2788

87. Vanderbilt www.vanderbilt.edu 800 x 4680

88. Virginia Tech www.vt.edu 800 x 5569 Overlay issue

89. VMI www.vmi.edu 800 x 3325

90. Wake Forest www.wfu.edu 800 x 4757 Didn't capture cleanly

91. Washington State University www.wsu.edu 800 x 5993

92. Washington University of St Louis www.wustl.edu 800 x 6688

93. Whitman www.whitman.edu 800 x 3976

94. Willamette www.willamette.edu 800 x 7269 Didn't capture cleanly

95. Williams www.williams.edu 800 x 3364

96. Yale www.yale.edu 800 x 3865

Copyright © 2021 Farsight Security, Inc. All trademarks are properties of their respective owners.

92

