

	

	

Preface	

This	white	paper	will	explain	how	to	use	Scala	with	Swing	to	create	a	demonstration	GUI	interface	to	Farsight's	

passive	DNS	database,	DNSDB	API.		

	

Before	getting	into	the	meat	of	that,	let's	go	over	some	prefatory	information.	

	

Intended	Audience	

	

This	white	paper	is	meant	for	users	comfortable	with	detailed	technical	content.	Experience	with	some	sort	of	

programming	or	scripting	language	will	be	helpful,	and	help	you	to	get	more	out	of	this	document.		

	

Substantively,	the	functionality	described	in	this	white	paper	may	also	be	of	particular	interest	to	certain	

DNSDB	users,	including	users	who	work	in	a	pure	Microsoft	Windows	PC	environment.	

	

Organization	of	This	White	Paper	

	

This	is	a	relatively	long	white	paper.	If	you	review	the	table	of	contents,	that	will	allow	you	to	see	how	this	

paper	is	organized,	and	what	we'll	cover.	In	looking	at	table	of	contents,	don't	let	the	number	of	"chunks"	

deter	you	--	some	"chunks"	may	consist	of	just	a	paragraph	or	two	of	text.	There	are	also	lots	of	images	and	

other	figures.	

	

Another	thing	we've	done	to	try	to	reduce	the	paper's	complexity	a	bit	is	to	divide	it	into	three	main	sections	

plus	five	appendicies:	

	

1)	The	first	section	consists	of	some	introductory	narrative/discussion	(which	you	can	skip	if	you're	impatient,	

although	reading	this	material	will	help	you	to	understand	"where	we're	coming	from"	and	why	we	did	some	

of	the	things	we	did)	

	

2)	A	second	section,	showing	you	how	to	actually	build	the	demo	GUI	front	end	code	for	use	on	a	local	Mac,	

and	

	

3)	A	third	section,	focusing	on	packaging	and	porting	the	code	for	use	on	third	party	systems,	including	both	

3rd-party	Macs	and	3rd-party	Microsoft	Windows	PCs	(such	as	systems	running	Windows	10	or	Windows	7).	

	

The	appendicies	contain	copies	of	our	actual	code.	

	

	

	 	

	 3	

Table	of	Contents	
	

Preface	...	2	

Table	of	Contents	...	3	

Section	1.	Discussion/Narative	

	 I.		 	 Introduction	..	4	

	 II.		 	 Why	Scala	..	4	

	 III.	 	 Scala	Documentation	..	5	

	 IV.	 	 Our	Overall	Plan	For	Today's	Example	..	6	

	 V.	 	 Integrated	Development	Environment?	...	7	

	 VI.	 	 Graphical	User	Interface	Selection	..	8	

	 VII.	 	 GUI	Layout	Managers	..	8	

	 VIII.	 	 RESTFUL	API	Call	Format	...	11	

	 IX.	 	 Cryptographic	Scaffolding	...	12	

	 X.		 	 Creating	build.sbt	sbt	Config	Files	...	13	

Section	2.	Actually	Building/Installing	Code	On	The	Local	Machine	

	 XI.	 	 Getting	Started	With	Scala	On	The	Mac:	Prerequisites	..	16	

	 XII.	 	 Installing	Scala	and	sbt	..	16	

	 XIII.		 	 Creating	The	Directory	Structure	We	Need	..	17	

	 XIV.	 	 SampleScala/build.sbt	...	18	

	 XV.		 	 SampleScala/project/assembly.sbt	...	18	

	 XVI.	 	 SampleScala/project/plugins.sbt	..	19	

	 XVII.	 	 Our	Actual	Scala	Source	Code	...	19	

	 XVIII.	 	 Creating	Your	DNSDB	API	Key	File	...	19	

	 XIX.	 	 The	JCE	Unlimited	Strength	Jurisdiction	Policy	Files	...	21	

	 XX.		 	 Building	The	Scala	Code	..	25	

	 XXI.	 	 Running	A	Query	and	Looking	At	The	Results	...	26	

	 XXII.		 	 Quitting	...	28	

	 XXIII.	 	 Packaging	Our	Code	For	Routine	Local	Use	Without	sbt	..	29	

Section	3.	Packaging	For	Use	on	3rd-Party	Macs	and	Windows	PCs	

	 XXIV.	 	 Creating	A	dmg	Package	For	Use	on	A	3rd-Party	Mac	..	30	

	 XXV.	 	 Running	Our	dmg	On	A	3rd-Party	Mac	...	31	

	 XXVI.		 	 Making	A	Microsoft	Windows	Installer	...	32	

	 XXVII.	 	 Using	The	MS	Windows	Installer	On	A	3rd-Party	System	...	35	

Section	4.	Conclusion	

	 XXVIII.			 Miscellaneous	Notes	...	42	

	 XXIX.	 	 What	Didn't	We	Do?	...	44	

	 XXX.		 	 Conclusion	...	45	

	 XXXI.	 	 Acknowledgments	...	45	

Appendicies	

	 Appendix	I.		 SampleScala/build.sbt	file	...	46	

	 Appendix	II.	 SampleScala/src/main/scala/SampleScala.scala	...	47	

	 Appendix	III.	 SampleScala/project/assembly.sbt	...	63	

	 Appendix	IV.	 SampleScala/project/plugins.sbt	..	63	

	 Appendix	V.	 Licenses	...	64	

	 Appendix	VI.	 check.java	source	file	..	65	

	

	

	 4	

	

SECTION	1.	Discussion/Narrative	
	

I.	Introduction	

	

Many	of	Farsight's	DNSDB	customers	access	DNSDB	via	either:	

	

• Our	command	line	interface	API	demo	programs	dnsdb_query.py1,	and/or	its	C	language	analog,	

dnsdb_query,2	or	via	

	

• Our	point-and-click	web	interface3		

	

However,	because	DNSDB	uses	a	RESTful	API,	there's	no	reason	why	you	shouldn't	be	able	to	access	DNSDB	

from	virtually	any	programming	language.			

	

For	any	"old	school"/traditional	coders	out	there,	we've	previously	demonstrated	how	to	query	DNSDB	using	

libcurl	from	gcc,	see	"Making	Programmatic	DNSDB	Queries	With	libcurl."
4		

	

This	document	describes	building	a	GUI	interface	to	DNSDB	using	Scala	on	the	Mac.	

	

We'll	also	package	our	program	so	we	can	move	it	over	and	run	it	on	other	Macs,	and	on	common	versions	of	

Microsoft	Windows	(such	as	Microsoft	Windows	7	or	Microsoft	Windows	10).	

	

II.	Why	Scala?	

	

You	may	wonder,	why	use	Scala	rather	than	directly	use	the	world's	2nd-most-popular	programming	

language,	Java?5	

	

Answer:	Scala	fixes	many	of	the	frustrations	that	have	historically	bedeviled	Java,	while	still	giving	coders	the	

ability	to	use	Java's	capabilities	when	doing	so	is	convenient	(or	inescapable).		

	

To	make	that	concrete,	see	(the	somewhat	tongue-in-cheek)	"How	Scala	compares	with	20	other	

programming	languages	according	to	Reddit	analysis:"
6	

	

	 [...]	Scala	appears	to	be	the	only	production-proven	programming	language	to	make	engineers		

	 happy	and	alleviate	their	need	to	curse	[relative	to]	more	broadly-adopted	languages	like	Java,		

	 PHP	and	JavaScript.	

	

That	analysis,	while	couched	a	bit	wryly,	is	based	in	truth.	Scala	is	"fun	to	code	in"	in	a	way	that	Java	and	other	

more-pedantic/strictly-object-oriented	languages	tend	not	to	be.	Less	cussing	and	more	happiness	results.	

																																																								
1	https://github.com/dnsdb/dnsdb-query	
2	https://github.com/dnsdb/dnsdb_c/	
3	https://www.dnsdb.info/	
4	https://www.farsightsecurity.com/2016/11/04/stsauver-dnsdb-libcurl/	
5	http://spectrum.ieee.org/computing/software/the-2016-top-programming-languages	
6	https://www.lightbend.com/blog/how-scala-compares-20-programming-languages-reddit-analysis	

	 5	

	

Scala	also	naturally	supports	a	functional	programming	model.	Quoting	Alvin	Alexander's	online	functional	

programming	book:7	

	

	 As	at	least	one	functional	developer	has	said,	when	you	‚	"Think	in	FP,"	you	see	an		

	 application	as	(a)	data	flowing	into	the	application,	(b)	being	transformed	by	a	series	of		

	 transformer	functions,	and	(c)	producing	an	output.	The	first	lessons	in	this	book	are		

	 aimed	at	helping	you	to	"Think	in	FP‚"	to	see	your	applications	in	this	way,	as	a	series		

	 of	data	flows	and	transformers.	

	

In	my	opinion,	that's	an	excellent	way	to	think	in	general	when	working	with	Farsight's	Security	Information	

Exchange,	and	Farsight's	passive	DNS	database,	DNSDB.	

	

Finally,	if	none	of	the	above	convinces	you	to	become	interested	in	Scala,	perhaps	you're	"monetarily-

motivated."	If	so,	note	that	Stack	Overflow's	annual	survey	of	"Top	Paying	Technologies	by	Region"8	lists	Scala	

as	being	tied	(with	Golang)	as	the	highest-paid	programming	language	in	the	United	States	at	$110,000/year.	

The	market	rewards	high-capability/high-demand/low-availability	skillsets	with	appropriate	salaries!	

	

III.	Scala	Documentation	

	

Excellent	online	documentation	for	Scala	is	available	at	the	Scala-Lang.Org	documentation	web	site,
9	including	

a	good	overview	document.10	

	

There	are	many	other	excellent	online	Scala	resources,	too	--	too	many	to	list	them	all	here.	Nonetheless,	if	

you've	not	worked	with	Scala	before,	I'd	strongly	urge	you	to	check	out:	

	

	 1.	Otfried	Cheong's	Scala	pages11	

		

	 2.	Alvin	Alexander's	great	online	Scala	materials,
12	as	referenced	throughout	this	article.		

	 Alvin	also	authored	the	magnificent	"Scala	Cookbook"	for	O'Reilly	(see	below)	and	has	an		

	 online	book,	"Functional	Programming,	Simplified"	(also	mentioned	previously	in	this	post).	

	

	 3.	Odersky,	Spoon,	and	Venners's	"Programming	in	Scala,"	1st	edition,
13	freely	available		

	 online.	Rather	have	the	current	(3rd)	edition?	See	below	for	a	link	to	that	traditionally		

	 published	book.	

	

Speaking	of	traditional-format	books,	a	variety	of	traditionally-published	Scala	books	are	also	available	in	print	

(or	e-book)	form	from	Amazon	or	your	favorite	local	independent	technical	bookstore.	See	for	example	(in	

alphabetical	order	by	author's	last	name):	

	

																																																								
7	http://scalafp.com/book/goals.html	
8	http://stackoverflow.com/insights/survey/2017/	
9	https://www.scala-lang.org/documentation/	
10	https://www.scala-lang.org/docu/files/ScalaOverview.pdf	
11	http://otfried.org/scala/	
12	http://alvinalexander.com/scala	
13	http://www.artima.com/pins1ed/	

	 6	

	

	 1.	Alvin	Alexander's	"Scala	Cookbook."14	

	

	 2.	Cay	S.	Horstmann's	"Scala	for	the	Impatient"
15	

	

	 3.	Odersky,	Spoon	and	Venner's	"Programming	in	Scala:	Updated	for	Scala	2.12"
16	

	

	 4.	Nilanjan	Raychaudhuri's	"Scala	in	Action"17	

	

	 5.	Venkat	Subramaniam's	"Pragmatic	Scala:	Create	Expressive,	Concise,	and	Scalable	Applications"
18	

	

	 6.	Joshua	D.	Sureth's	"Scala	in	Depth"19	

	

	 7.	Jason	Swartz's	"Learning	Scala:	Practical	Functional	Programming	for	the	JVM"
20	

	

	 8.	Wampler	and	Payne's	"Programming	Scala:	Scalability	=	Functional	Programming	+	Objects"
21	

	

There	are	doubtless	other	terrific	Scala	books,	too,	sorry	if	we	accidentally	omitted	any	which	you	may	

particularly	like.	

	

IV.	Our	Overall	Plan	For	This	Example	

	

In	order	for	this	project	to	work,	we	need	to	be	able	to:	

	

	 1.	Display	a	form	in	a	graphical	user	interface	(GUI)	window.	We'll	roughly	model	our	interface		

	 on	Farsight's	classic	web		interface	to	DNSDB,	but	just	for	the	heck	of	it,	let's	extend	the		

	 capabilities	our	interface	offers	to	include	the	ability	to:	

	

	 	 a.	See	how	many	queries	we've	consumed	

	 	

	 	 b.	Specify	the	maximum	number	of	observations	we	want	to	potentially	receive,		

	 	 from	one	to	one	million.	

	

	 	 c.	Limit	the	returned	results	to	those	from	just	the	last	N	days,	and	

	

	 	 d.	Get	those	results	in	either	plain	text	or	JSON	lines22	formats.	

																																																								
14	https://www.amazon.com/gp/product/1449339611/	
15	https://www.amazon.com/Scala-Impatient-Cay-S-Horstmann/dp/0321774094/	
16	https://www.amazon.com/Programming-Scala-Updated-2-12/dp/0981531687/	
17	https://www.amazon.com/Scala-Action-Covers-2-10/dp/1935182757/	
18	https://www.amazon.com/Pragmatic-Scala-Expressive-Scalable-Applications/dp/1680500546/	
19	https://www.amazon.com/Scala-Depth-Joshua-D-Suereth/dp/1935182706/	
20	https://www.amazon.com/Learning-Scala-Practical-Functional-Programming/dp/1449367933/	
21	https://www.amazon.com/Programming-Scala-Scalability-Functional-Objects/dp/1491949856/	
22	http://jsonlines.org/	

	 7	

	

	 2.	Take	the	information	the	user	entered	into	that	form	and	use	it	to	do	a	RESTful23	query		

	 against	DNSDB	API	over	a	strongly-encrypted	TLS	connection	(including	handling	authentication		

	 via	DNSDB's	API	key	header).	Because	we're	highly	interested	in	promoting	adoption	of	strong

	 cryptography,	we've	intentionally	used	a	ciphersuite	that	will	give	you	few	options	but	to		

	 download	and	install	Java's	unlimited	strength	crypto	policy	files.	

	

	 3.	We	also	need	to	manage	the	results	returned	by	DNSDB.	For	this	program,	we'll	save	those		

	 results	to	text	files,	one	per	query,	and	leave	viewing	and	other	management	of	those	files	to		

	 the	system's	file	manager	(e.g.,	Finder	in	the	case	of	the	Mac	or	Windows	Explorer	in	the	case		

	 of	PCs	running	Microsoft	Windows).	It	might	be	tempting	to	display	our	output	in	a	graphic		

	 window,	but	recognize	that	a	single	query	may	return	up	to	a	million	results.	That's	hard	to		

	 handle	elegantly	in	a	GUI	window.	To	keep	this	already-long	white	paper	semi-straightforward,		

	 we're	just	going	to	punt	and	write	files.	(We	will,	however,	at	least	give	the	user	a	"popup"		

	 window	explaining	where	to	look	for	those	files)	

	

IMPORTANT	NOTE:	The	client	described	in	this	white	paper	is	meant	just	as	an	illustration/example,	it	is	NOT	

being	released	as	an	officially-supported	additional	production	interface	to	Farsight's	DNSDB	API.		Remember		

--	the	code	you're	seeing	here	is	JUST	meant	as	an	example/illustration,	not	production/bulletproofed	code!	

	

V.	Integrated	Development	Environment?	

	

Scala	code	can	be	built	with	a	regular	text	editor,	or	using	an	integrated	development	environment	(such	as	

NetBeans,24	Eclipse,25	or	IntelliJ26).	We	won't	be	installing	or	using	an	IDE	for	the	purposes	of	this	article.		

	

If	you	independently	decide	to	try	experimenting	with	a	Scala-aware	IDE,	please	note	that	at	least	in	some	

cases,	it	may	be	difficult	or	impossible	to	fully	rollback	such	installations	should	you	want	to	do	so.	For	

example,	the	Eclipse	FAQ27	states	that		

	

	 Depending	upon	the	particular	version	of	Eclipse	you	are	running	with,	the	difficulty	of		

	 uninstalling	features	or	plugins	from	an	Eclipse	installation	ranges	from	trivial	to	painful.		

	 In	some	cases,	Eclipse	doesn't	support	uninstalling	certain	'optional'	features	after	they		

	 have	been	installed.	

	

Proceed	carefully	if	you	decide	to	install	an	IDE	notwithstanding	that	caveat,	and	be	sure	you	have	a	current	

backup.	

	

	 	

																																																								
23	https://en.wikipedia.org/wiki/Representational_state_transfer	
24	https://netbeans.org/	
25	https://eclipse.org/	
26	https://www.jetbrains.org/	
27	https://wiki.eclipse.org/FAQ_How_do_I_remove_a_plug-in%3F	

	 8	

VI.	Graphical	User	Interface	Selection	

	

For	our	GUI,	we'll	use	the	Scala	implementation	of	Swing.	Some	online	Scala	Swing	resources	you	should	keep	

in	mind	include:	

	

	 1.	The	scala-swing28	site	on	Github	

	

	 2.	The	scala-swing	incubation	project29	site	on	Github,	and	

	

	 3.	The	Scala	Swing	2.12	libraries30	on	the	Maven	Repository.	

	

Scala	does	support	other	GUIs,	including	JavaFX,31	but	Swing's	good	enough	for	our	little	example.		

	

Documentation	for	Scala	Swing	is	relatively	scarce,	but	check	out	classic	Java	Swing	books	and	the	Swing	

section	of	the	Java	Client	Technologies	website.32	You	may	also	want	to	see	the	Scala-Swing	project	site33	on	

Github.	

	

VII.	GUI	Layout	Managers	

	

There's	also	the	matter	of	choice	of	layout	managers.		

	

Layout	managers	help	applications	figure	out	a	graceful	way	to	reconfigure	a	user's	interface	when	confronted	

with	different	screen	geometries	(such	as	huge	LCD	panels	vs	small	mobile	devices	with	tiny	screen	

geometries),	different	font	sizes,	etc.	Layout	managers	usually	accommodate	those	odd	screen	and	font	sizes	

by	moving	around	or	resizing	buttons,	fields,	labels,	panels,	etc.,	all	while	attempting	to	preserve	the	

relationship	between	items	and	an	overall-usable/reasonable	display	configuration.	

	

Since	this	is	just	a	demo	client,	we're	simply	going	to	hard	code	the	interface	layout.	We've	made	it	the	way	

we	want	it	to	look	on	a	typical	laptop	screen	rather	than	bothering	to	use	a	layout	manager.	(The	tradeoff	is	

obviously	one	of	control	and	simplicity	vs.	flexibility	and	elegance).	

	

The	overall	architecture	of	the	program	is	very	straightforward.	We	created	a	vertical	BoxPanel	and	then	a	

series	of	horizontal	BoxPanels	within	that	vertical	BoxPanel,	one	for	each	field.	See	Figure	1.	

	

	 	

																																																								
28	https://github.com/scala/scala-swing	
29	https://github.com/ingoem/scala-swing	
30	https://mvnrepository.com/artifact/org.scala-lang.modules/scala-swing_2.12	
31	http://docs.oracle.com/javase/8/javase-clienttechnologies.htm	
32	ibid	
33	https://github.com/scala/scala-swing/blob/2.0.x/docs/SIP-8.md	

	 9	

Figure	1.	GUI	Panel	Conceptual	Layout	

	

	
	

Boxes	were	spaced	using	Scala	Swing's	strut	and	glue	features.	struts	and	glue	will	feel	very	familiar	to	anyone	

who's	ever	worked	laying	out	documents	(particularly	tables!)	with	TeX	or	LaTeX.		

	

struts	(see	the	shaded	"v"	and	"h"	boxes	below	in	figure	2)	act	as	rigid	horizontal	or	vertical	spaces.	We	use	

them	today	to	maintain	margins,	and	for	inter-item	spacing.	

	

glue	(actually,	a	somewhat	more	descriptive	name	might	be	"expanding	foam")	automatically	expands	to	fill	

available	space,	with	glue	on	the	right	translating	to	a	left-justified	layout,	and	glue	on	the	left	and	right	

simultaneously	creating	centered	text.	See	Figure	2.	

	

	 	

	 10	

Figure	2.	Use	of	Horizontal/Vertical	Struts	and	Glue	For	Spacing	

	

	
	

The	layout	components	for	the	topmost	box	in	that	diagram	can	be	seen	in	the	following	code	excerpt.	

	

Figure	3.	Scala	Swing	Code	Excerpt	Illustrating	Use	of	Horizontal/Vertical	Struts	and	Glue	For	Spacing	

	
 def do_GUI_form() {
 contents = new BoxPanel(Orientation.Vertical) {
 background = c537
 contents += Swing.VStrut(borderMargin)

 // Title
 contents += new BoxPanel(Orientation.Horizontal) {
 background = c537
 contents += Swing.HStrut(borderMargin)
 contents += Swing.HGlue
 contents += new swing.Label {
 text = "DNSDB API DEMO CLIENT IN SCALA"
 font = new Font(myFont, java.awt.Font.BOLD, myFontSize)
 }
 contents += Swing.HGlue
 contents += Swing.HStrut(borderMargin)
 }
 contents += Swing.VStrut(bigVerticalSpaceBetweenItems) [...]

	

Spacing	considerations	also	helped	to	drive	our	decision	to	use	Scala's	Monospaced	font.	While	we	could	have	

created	a	table	layout,	or	established	tab	settings,	our	decision	to	use	a	monospace	font	simplified	the	process	

of	visually	aligning	horizontal	fields	since	all	characters	are	of	equal	width.		

	

We	also	made	the	"executive	decision"	to	use	relatively	large	fonts,	as	you	might	if	you	have	a	large	display	

visual	accuity	challenges.	Since	you	have	source	code,	if	you	like	a	different	size	font,	you	obviously	can	change	

the	source	and	rebuild.	

	

	 11	

VIII.	RESTFUL	API	Call	Format	

	

Once	we've	gleaned	the	information	we	need	from	our	form,	we	then	need	to	build	and	execute	RESTFUL	API	

calls	to	the	DNSDB	API.		

	

The	specifications	for	the	DNSDB	API	are	available	online,34	so	it's	just	a	matter	of	translating	what	had	been	

collected	in	our	online	form	into	what	the	DNSDB	API	actually	needs,	and	then	making	a	RESTFUL	API	call	for	

the	query.		

	

Making	a	RESTFUL	API	call	is	generally	a	straightforward	matter	of	assembling	the	required	parameters	into	a	

complete	URL,	although	some	"conversions"	may	be	required	for	some	user-specified	parameters.		

	

For	instance,	we	need	to	convert	"days"	(as	used	in	the	interface	for	time	fencing	purposes)	into	seconds	(as	

required	by	DNSDB	API).	While	date	and	time	values	always	have	the	potential	to	present	unexpected	

complexities	and	there	are	specific	authoritative	routines	for	doing	time	manipulations,	in	this	case	we	simply	

elected	to	convert	days	into	seconds	by	multiplying	the	number	of	days	by	(24	hour/day)	*	(60	minutes/hour)	

*	(60	seconds/minute).	

	

We	also	need	to	handle	characters	that	can't	be	passed	without	risk	of	being	misinterpreted,	as	in	the	case	of	

slash	characters	--	is	a	slash	character	part	of	a	CIDR	mask?	Or	does	a	slash	character	represent	a	separator	

between	directories	and	file	names?	The	DNSDB	API	specifies	that	slashes	(as	used	in	the	representation	of	

CIDR	prefixes	such	as	128.223.0.0/16)	must	be	replaced	(for	DNSDB	API	purposes)	with	commas	(resulting	in	

CIDR	specifications	such	as	128.223.0.0,16).		

	

This	and	a	couple	of	other	tweaks	can	easily	be	made	with	the	Scala	replace	statement.	For	example,	if	you	

look	at	the	Scala	code	in	Appendix	II,	you'll	see	the	statements	shown	in	Figure	4:	

	

Figure	4.	Scala	replace	statements	

	
 tempstring2 = tempstring2.replace("/", ",")
 tempstring2 = tempstring2.replace(":", "#")
 tempstring2 = tempstring2.replace("*", "STAR")

	

Note	that	you	don't	need	to	make	a	one-character-for-one	character	substitution.	This	can	be	seen	in	the	last	

of	those	statements,	where	we	replace	an	asterisk	(one	character)	with	a	four	character-long	string	literal	

("STAR").	

	

	 	

																																																								
34	https://api.dnsdb.info/	

	

	 12	

IX.	Cryptographic	Scaffolding	

	

Farsight's	public	API	(like	all	sane	sites	that	authenticate	with	non-one-time	credentials)	uses	an	https	(secure)	

web	interface.	This	means	that	any	client	that	wants	to	connect	to	the	DNSDB	API	MUST	be	able	to	establish	

an	SSL/TLS	(secure)	connection.	But	what	cryptographic	framework/toolkit	should	we	use	for	that?	

	

Perhaps	libcurl?		In	our	previously-mentioned	blog	post,35	we	used	libcurl36	on	top	of	OpenSSL37	as	our	higher-

level	encrypted	data	transport	environment.	That	worked	well.		

	

Unfortunately,	there	are	no	libcurl	Scala	bindings.38	There	ARE	Java	bindings	for	libcurl,39	but	that's	

reportedly	an	incomplete/in-process	effort.	

	

To	avoid	having	the	"simple"	matter	of	our	choice	of	crypto	scaffolding	devolve	into	a	long	review	of	Java	

cryptographic	options	and	their	respective	strengths	and	shortcomings,	we'll	just	be	pragmatic	and	use	the	

Java	Net	URL	Class
40	with	the	Java	HttpURLConnection	Class.41	

	

Figure	5.		

	
	 openConnection.asInstanceOf[HttpURLConnection]

	 	

That	approach	is	not	without	its	limitations,	but	it's	good	enough	for	our	purposes.	The	basics	of	that	approach	

(albeit	in	Java	rather	than	Scala)	are	well	illustrated	in	yet	another	excellent	article	by	Alvin	Alexander.42	

	 	

An	aside:	Dispatch43	is	often	mentioned	in	online	fora	as	an	alternative	worth	considering	for	https	

connections	in	Scala,	but	Dispatch	is	known	for	using	"cryptic	operator	methods"	that	can	make	your	program	

read	like	"Morse	Code"	--	see	for	example	these	comments.
44	If	you	do	decide	to	try	rewriting	our	sample	

code	to	use	a	different	https	library,	such	as	Dispatch,	you	may	find	the	rather	cool	"Periodic	Table	of	

Dispatch	Operators"
45	to	be	a	helpful	online	"cheatsheet."	

	

In	thinking	further	about	issuing	our	restful	calls,	note	that	because	the	DNSDB	API	uses	an	API	key	for	

authentication,	we	also	need	to	be	able	to	send	our	API	key	as	a	supplemental	header.	(This	is	not	typically	a	

big	deal,	just	one	of	those	things	we	need	to	know	how	to	accommodate).		

	

																																																								
35	"Making	Programmatic	DNSDB	Queries	With	libcurl,"	

https://www.farsightsecurity.com/2016/11/04/stsauver-dnsdb-libcurl/	
36	https://curl.haxx.se/libcurl/	
37	https://www.openssl.org/	
38	https://curl.haxx.se/libcurl/bindings.html	
39	https://curl.haxx.se/libcurl/bindings.html	
40	https://docs.oracle.com/javase/8/docs/api/java/net/URL.html#openConnection--	
41	https://docs.oracle.com/javase/8/docs/api/java/net/HttpURLConnection.html	
42	http://alvinalexander.com/blog/post/java/simple-https-example	
43	http://dispatch.databinder.net/Dispatch.html	
44	http://stackoverflow.com/questions/5564074/scala-http-operations	
45	http://www.flotsam.nl/dispatch-periodic-table.html	

	 13	

Headers	will	also	be	how	we	choose	between	plain	text	and	JSON	lines	format	output.	(Speaking	of,	for	this	

example,	we're	going	to	save	all	our	output	with	a	.txt	file	extension,	even	if	the	JSON	lines	format	output	

could	arguably	be	more	accurately	served	with	a	.jsonl	extension)	

	

We	also	want	to	be	able	to	explicitly	"fine	tune"	the	cryptography	we	use	so	as	to	"encourage"	users	to	

install	Java's	unlimited	strength	crypto	policy	files.	

	

We	do	that	by	forcing	the	use	of	a	particular	cipher	suite,	namely	what	the	IETF	calls	

TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384	(that	ciphersuite	is	also	known	by	its	"OpenSSL	name,"	

ECDHE-RSA-AES256-GCM-SHA384).	This	is	a	strong	cipher	suite,	and	one	of	the	ciphersuites	that's	part	of	the	

"Better	Crypto	Applied	Crypto	Hardening"
46	"Strong	Cipher	Suites	Configuration	A"	(and	B)	

recommendations.	So	far,	so	good.	

	

The	bad	part?	That	cipher	suite	will	ONLY	work	if	we	install	Java's	Unlimited	Strength	Cryptography	Policy	

Files,	as	we	describe	later	in	this	article.	If	you:	

	

• Don't	trust	elliptic	curve	crypto,	or		

• You'd	prefer	to	just	let	regular	ciphersuite	negotiation	occur,	or		

• You're	not	in	a	locale	where	access	to	strong	crypto	is	a	legal	option,		

	

you	can	just	comment	out	the	lines	selecting	that	cipher	suite	in	the	provided	Scala	source	code,	see	

Appendix	II.		

	

A	final	cryptography-related	point:	some	documents	suggest	that	2048	bit	Ephemeral	Diffie	Hellman	is	the	

maximum	potentially	available	DHE	key	size	in	Java	1.8	(see	for	example	"Clients	support	Ephemeral	DH	over	

1024	bits"	BUT	"Somewhat	less	positively,	the	new	limit	is	2048	bits"	as	mentioned	in	Ivan	Ristic's	article	

"Significant	SSL/TLS	improvements	in	Java	8."
47	In	our	hands-on	testing,	however,	we've	found	that	4096	bit	

EDH	CAN	BE	successfully	used,	so	that's	what	we've	configured	in	our	sample	code.	Again,	if	you	don't	want	

this	or	can't	use	this	do	to	policy	constraints,	this	option	can	be	removed	from	the	sample	code.	

X.	Creating	build.sbt	sbt	Config	Files	

	

Scala	and	sbt	are	continually-evolving	languages.	The	most	recent	version	of	sbt	now	supports	multiproject	

builds.	The	recommended	build.sbt	format	has	changed	as	a	result.	See	the	sbt	build	definition	page48	for	

details.	

	

Because	of	the	relative	simplicity	of	this	project,	however,	we	decided	to	just	create	a	simple	"classic-format"	

build.sbt	file	per	the	sbt	Reference	Manual's	Appendix:	.scala	build	definition,49	instead.	My	impression	is	that	

the	classic	format	is	somewhat	simpler	than	the	new	format,	and	the	classic	format	continues	to	work	just	

fine.	

	

	 	

																																																								
46	https://bettercrypto.org/static/applied-crypto-hardening.pdf	
47	https://blog.ivanristic.com/2014/03/ssl-tls-improvements-in-java-8.html	
48	http://www.scala-sbt.org/0.13/docs/Basic-Def.html	
49	http://www.scala-sbt.org/0.13/docs/Full-Def.html	

	 14	

Working	with	build.sbt	also	brings	up	the	question	of	dependency	management,	as	in	"How	do	we	find	any	

additional	libraries	we	may	need	for	our	code?"	

	

Java	allows	an	"unmanaged	dependency"	model	where	you	simply	dump	the	jar	files	you're	using	into	your	

Java	classpath.50	Scala	and	sbt	will	then	find	and	use	the	files	they	need.	While	that	laissez	faire	approach	

works	OK,	we	prefer	to	use	the	less-ad-hoc/more-structured	"managed	dependencies"	model.	In	the	managed	

dependencies	model,	you'll	need	to	explicitly	tell	sbt	where	to	download	the	Scala	libraries	you	want	to	use.	

	

In	our	build.sbt	file,	as	shown	in	Appendix	I,	there's	only	one	such	dependency	--	it's	the	scala-swing	library.	

That	dependency	is	specified	as:	

	

Figure	6.	Sample	build.sbt	dependency	expression	

	
 // https://mvnrepository.com/artifact/org.scala-lang.modules/scala-swing_2.12
 libraryDependencies += "org.scala-lang.modules" % "scala-swing_2.12" % "2.0.0"

	

Where	did	those	specific	lines	come	from?	Well,	we	copied	and	pasted	them	from	the	sbt	"tab"	on	the		

scala-swing
51	page	at	the	Maven	Repository.	

	

Speaking	of	Maven,	when	searching	for	artifacts	in	the	Maven	Repository,	it	is	important	that	you	get	the	

RIGHT	VERSION	of	the	libraries	you	need.	If	you	just	search	Maven	for	scala-swing	,	the	first	"scala-swing"	

version	Maven	finds	(at	least	in	my	case)	was	NOT	Swing	for	Scala	2.12,	it	was	Swing	for	Scala	2.11.		

	

If	you	try	to	use	Swing	for	Scala	2.11	with	Scala	2.12	you'll	likely	run	into	some	weird	errors.	Ugh!	Therefore,	

when	you	add	dependencies	to	your	build.sbt	file,	be	careful	to	ensure	that	the	dependency	specs	you	copy	

from	Maven	are	the	correct	(typically	most	recent)	version.	

	

By	the	way,	if	you	ever	need	to	see	what	version	of	Scala	you're	using,	one	way	to	check	is	simply	by	starting	

an	interactive	Scala	shell,	as	used	for	REPL-style52	interactive	Scala	processing:	

	

Figure	7.	Checking	the	Scala	Version	with	the	Interactive	Scala	Shell	

	
 $ scala
 Welcome to Scala 2.12.1 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_121).
 Type in expressions for evaluation. Or try :help.

 scala> :quit

A	nice	overview	of	sbt	written	by	Alvin	Alexander	can	be	seen	online.53	

	

For	detailed	online	documentation	about	sbt,	see	the	sbt	Reference	Manual
54	in	PDF	format.		

	

You	may	also	be	interested	in	traditionally	published	books	about	sbt,	such	as:	

	

																																																								
50	https://docs.oracle.com/javase/tutorial/essential/environment/paths.html	
51	https://mvnrepository.com/artifact/org.scala-lang.modules/scala-swing_2.12/2.0.0	
52	https://en.wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop	
53	http://alvinalexander.com/scala/sbt-how-to-manage-project-dependencies-in-scala	
54	http://www.scala-sbt.org/0.13/docs/sbt-reference.pdf	

	 15	

	 1.	Saxena's	"Getting	Started	with	SBT	for	Scala"55	

	

	 2.	Suereth	and	Farwell's	"sbt	in	Action:	The	simple	Scala	build	tool"
56	

	

That's	enough	talking	about	scala,	swing,	crypto,	sbt	and	everything	else	--	let's	get	going	and	actually	build	

some	code!	

	 	

	 	

																																																								
55	https://www.amazon.com/Getting-Started-Scala-Shiti-Saxena/dp/1783282673	
56	https://www.amazon.com/sbt-Action-simple-Scala-build/dp/1617291277	

	 16	

SECTION	2.	Actually	Building/Installing	Code	On	The	Local	Machine	

	
XI.	Getting	Started	With	Scala	On	The	Mac:	Prerequisites	

	

As	in	earlier	articles,	we'll	assume	you're	working	on	a	current	generation	Mac	(perhaps	running	MacOS	

Sierra).	We	also	assume	that	your	Mac	is	fully	patched	up-to-date	and	recently	backed	up.		

	

• We'll	also	assume	that	you've	already	installed	Apple's	developer's	tools,	Xcode.57	

	

• For	the	installation	of	many	prepackaged	libraries,	we'll	rely	on	Brew.58	

	

• We	also	need	Java.	There	are	a	confusingly	large	number	of	different	versions,	so	to		

keep	this	simple,	let	me	simply	say	that	anyone	who	wants	to	try	this	little	application		

should	install	Java	SE	1.8	version	131	JDK	(also	known	as	Java	SE	8u131	JDK)59	or	later.	

Please	do	this	even	if	you've	already	got	some	other	version	of	Java	installed.60	

		

XII.	Installing	Scala	and	sbt	

	

Once	you've	gotten	all	the	above	prerequisites	accomplished,	it's	then	time	to	install	Scala	and	sbt.	Scala	and	

sbt	are	easy	to	install	on	the	Mac	using	brew,	see	Figure	8.	

	

Figure	8.	Installing	scala	and	sbt	using	Brew	

	
 $ brew update
 $ brew install scala
 $ brew install sbt

	

Scala	is	a	highly	extensible	language.	While	it	may	seem	like	we've	already	downloaded	a	"lot"	of	software,	

Scala	and	sbt	will	typically	download	still	more	(as	our	choice	of	features	may	require).	Most	often,	additional	

required	libraries	will	be	retrieved	from	the	Maven	repository.
61	We'll	talk	more	about	sbt	and	Maven	later	in	

this	white	paper.	

	

	 	

																																																								
57	https://developer.apple.com/xcode/downloads/	
58	https://brew.sh/	
59	http://www.oracle.com/technetwork/java/javase/downloads/index-jsp-138363.html#javasejdk	
60	Note	that	earlier	versions	of	Java	(such	as	Java	1.7)	will	almost	certainly	NOT	work.	On	the	other	hand,	if	

you're	reading	this	post	months	or	years	from	when	it	was	originally	written	and	published,	you	should	try	to	

run	the	latest	versions	of	Java	that	may	have	been	released	since	that	time.		
61	https://mvnrepository.com/tags/scala	

	 17	

XIII.	Creating	The	Directory	Structure	We	Need	

	

sbt	("Simple	Build	Tool")	has	a	specific	directory	structure	it	expects	to	see.		

	

We'll	create	that	directory	structure	using	Unix	shell	commands	modeled	after	those	shown	by	Alvin	

Alexander's	"How	to	create	an	SBT	project	directory	structure."62		

	

Let's	call	our	project	SampleScala.	That	implies	having	a	project	"home"	or	"base"	directory	by	the	same	name:	

	

Figure	9.	Making	Our	Project's	Top	Level	Directory	

	
	 $ mkdir SampleScala
 $ cd SampleScala

	 	

Now	create	the	rest	of	the	directory	structure	that	sbt	needs	under	that	top-level	"home"	or	"base"	directory.	

Be	sure	you're	down	in	that	directory	before	running	the	commands	shown	in	Figure	10!	

	

Figure	10.	Making	the	Rest	of	the	Directories	We	Need	

	
 $ mkdir -p src/{main,test}/{java,resources,scala}
 $ mkdir lib project target

Having	built	the	directory	structure	that	sbt	needs,	we	can	visualize	it	with	the	tree	command.	Note	that	some	

users	may	first	need	to	install	tree	with	brew:	

	

Figure	11.	Installing	tree	

	
	 $ brew install tree

	

With	tree	installed,	run	the	tree	command	from	within	the	base	SampleScala	directory:	

	

Figure	12.	Running	Tree	

	
	 $ tree

	

	 	

																																																								

62	http://alvinalexander.com/scala/how-to-create-sbt-project-directory-structure-scala	

	 18	

tree	should	report	a	skeletal	directory	structure	that	looks	like	this:	

	

Figure	13.	Tree	Output	for	Our	Skeletal	Scala	Domain	Structure	

	

	 	
	

Note	that	the	base	ScalaSample	directory	(which	is	where	we	ran	tree)	is	represented	by	the	dot	in	the	upper	

left	corner	of	that	diagram.	

	

XIV.	SampleScala/build.sbt	

	

To	get	us	closer	to	being	read	to	use	sbt	to	build	our	project,	copy	the	first	build.sbt	file	from	Appendix	I,	

putting	it	into	the	top	level	SampleScala	project	directory.	

	

Note	that	the	build.sbt	file	MUST	be	called	build.sbt	and	MUST	be	placed	in	our	base	(top	level)	SampleScala	

directory.		

	

If	you	look	at	the	build.sbt	file	in	an	editor,	be	careful	NOT	to	accidentally	remove	the	blank	lines	included	in	

that	file.	Those	blank	lines	are	present	because	sbt	requires	them	in	order	for	the	file	to	be	correctly	

interpreted	and	processed	(e.g.,	no,	that	file	did	not	"accidentally"	somehow	become	"double-spaced")	

	

XV.	SampleScala/project/assembly.sbt	

	

Copy	SampleScala/project/assembly.sbt	from	Appendix	III	to	SampleScala/project/assembly.sbt	

	

We	won't	use	that	file	immediately,	but	now's	a	reasonable	time	to	get	it	created.	

	

This	file	MUST	be	called	assembly.sbt	and	MUST	be	put	into	SampleScala/project/assembly.sbt	

	

	 	

	 19	

XVI.	SampleScala/project/plugins.sbt	

	

Copy	SampleScala/project/plugins.sbt	from	Appendix	IV	to	SampleScala/project/plugins.sbt	

	

Again,	this	is	a	file	that	will	come	into	play	later,	but	let's	get	it	moved	now,	while	we're	doing	other	

"housekeeping."	

	

This	file	MUST	be	called	plugins.sbt	and	MUST	be	put	into	SampleScala/project/plugins.sbt	

	

XVII.	Our	Actual	Scala	Source	Code	

	

The	next	thing	we	need	is	our	actual	Scala	program.	Our	program's	a	little	under	1000	lines,	so	we've	put	that	

code	into	Appendix	II.		

	

That	file	MUST	go	into	the	SampleScala/src/main/scala	directory	and	MUST	use	the	name	SampleScala.scala		

	

XVIII.	Creating	Your	DNSDB	API	Key	File	

	

Our	sample	program	needs	a	Farsight	API	key	in	order	to	be	able	to	access	DNSDB.	Strict	rules	pertain	to	the	

creation	of	that	file:	

	

-	This	file	MUST	be	located	in	your	default	directory	(e.g.,	on	the	author's	Mac	this	is	/Users/joe)	

	 	

-	It	MUST	be	called	.dnsdb-apikey.txt	(NOTE	the	leading	dot!)	

	 	

-	It	MUST	contain	ONLY	your	64	character	DNSDB	API	key	and	nothing	else	(no	quotes,	no	"comments,"	etc.)	

	

-	It	MUST	be	a	plain	text	file	(not	a	MS	Word	document	or	other	formatted	file)	

	

If	you	forget	to	enter	your	API	key,	or	you	didn't	create	that	file	in	your	default	directory,	the	Scala	program	

won't	be	able	to	run	once	we've	built	it.	Instead,	it	will	pop	up	a	message	like	this	one:	

	

Figure	14.	Missing	API	Key	Dialog	Box	Message	

	

	
	

	 	

	 20	

An	easy	way	to	create	the	.dnsdb-apikey.txt	file	on	the	Mac	is	with	the	nano	editor:	

	

Figure	15.	Building	A	.dnsdb-apikey.txt	file	using	nano	

	
 $ nano ~/.dnsdb-apikey.txt
 [cut-and-paste or type in your API key here]
 [control-o]
 [control-x]

	

If	you've	accidentally	omitted	one	or	more	characters,	or	you've	accidentally	added	extra	characters,	we'll	also	

catch	that	and	refuse	to	run:	

	

Figure	16.	Wrong	Length	API	key	warning		

	

	
	

	 	

	 21	

If	you	manage	to	enter	exactly	64	characters	for	your	API,	but	still	manage	to	make	some	sort	of	typo,	when	

you	try	to	run	the	program	you'll	see	a	different	error	(note	the	red	text):	

	

Figure	17.		Bad	API	Key	Warning	

	

	 	
	

	

Or	perhaps	you	simply	don't	HAVE	a	DNSDB	API	key?	Please	see	the	Farsight	Website
63	for	more	information.	

	

XIX:	The	JCE	Unlimited	Strength	Jurisdiction	Policy	Files	

	

In	this	step,	you'll	be	downloading	and	installing	the	Java	Cryptography	Extension	(JCE)	Unlimited	Strength	

Jurisdiction	Policy	Files
64().	The	two	jar	files	you	need	are	bundled	by	Oracle	into	a	single	zip	archive	file.	

	

Once	you've	download	that	archive	and	you've	unziped	the	archive,	copy	the	unzipped	jar	files	into	the	

lib/security	directory	that's	under	your	Java	Runtime's	home	directory.	

	

	 	

																																																								
63	https://www.farsightsecurity.com/order-services/	
64	http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html	

	 22	

Note:	in	our	experience,	many	users,	even	tech-savvy	users,	often	encounter	problems	successfully	

accomplishing	this	seemingly-simple	task.	If	you're	having	difficult-to-resolve	issues,	consider	building	and	

running	the	check.java	script	from	Appendix	VI.		

	

To	do	so,	copy	the	Java	commands	listed	in	Appendix	VI	into	the	file	check.java	in	your	home	directory.	Then	

compile	and	run	it	by	saying:	

	

	 Figure	18.	Running	the	Java	Sanity	Checking	Script	

	
	 $ javac check.java
 $ java check

	

You	should	see	a	report	that	looks	something	like	the	following:	

	

	 Figure	19.	Java	Sanity	Checking	Script	Output:	

	
	 		Sanity checking DNSDB API Environment...
 --

 What operating system?...
 Mac OS X 10.12.4
 What JRE?...
 1.8.0_131
 Installed where?...
 /Library/Java/JavaVirtualMachines/jdk1.8.0_131.jdk/Contents/Home/jre
 Unlimited crypto policy files enabled?...
 true
 Is there a .dnsdb-apikey.txt file in your home directory?...
 Home dir: /Users/joe
 Found: /Users/joe/.dnsdb-apikey.txt
 Contents:
 [API key omitted here]
 Size=64 characters (disregarding EOL chars)?...
 true

	

STRONG	CRYPTO	FAQ	ITEMS	

	

"(a)	How	Do	I	Find	My	Java	Runtime's	Home	Directory?"	

	

This	can	be	potentially	tricky,	depending	on	whether	or	not	you	have	multiple	copies	of	Java	installed.	Many	

times	people	DO	have	multiple	copies	of	Java	installed,	and	as	a	result	may	end	up	installing	the	new	strong	

crypto	policy	files	in	the	wrong	location.	The	Sanity	Checking	script	mentioned	in	the	preceding	section	may	

help.	

	

Please	note	that	it	is	critical	for	you	to	install	the	Java	Cryptography	Extension	(JCE)	Unlimited	Strength	

Jurisdiction	Policy	Files	in	the	RIGHT	location	(or,	alternatively,	in	ALL	possibly	relevant	Java	locations).		

	

If	you	DON'T	install	these	policy	files	properly,	our	sample	Scala	GUI	program	won't	work	because	we've	

intentionally	specified	a	cryptographic	suite	that	will	ONLY	work	if	you	have	the	JCE	Unlimited	Strength	

Jurisdiction	Policy	Files	installed.		

	

If	you	try	running	the	program	WITHOUT	the	strong	crypto	policy	files	enabled,	noting	will	happen	except	

you'll	see	a	"nudgy"	dialog	message	that	looks	like:	

	 23	

	

	

	

Figure	20.	Unlimited	Crypto	NOT	Installed	Error	Message	

	

	
	

To	see	possible	locations	where	the	Java	crypto	policy	files	may	be	installed,	try	searching	with	the	Unix	find	

command.	To	avoid	reports	of	problems	accessing	some	file,	you	may	want	to	run	the	find	command	as	super	

user	using	sudo	(note	that	you'll	need	to	supply	an	Administrator's	password	when	prompted,	if	you're	using	

sudo):	

	

Figure	21.	Searching	Your	System	for	local_policy.jar	file	locations	

	
 $ sudo find / -name local_policy.jar -print

	 	

	 	

	 24	

In	our	case,	we	found	(among	other	copies)...	

	

Figure	22.	Selected	Sample	local_policy.jar	Files	Found	Using	the	find	Command	

	
	 /Users/joe/Downloads/UnlimitedJCEPolicyJDK8/local_policy.jar

	 (this	is	one	of	the	unzipped	files	we	downloaded	from	Oracle)	

	
	 /Applications/Xcode.app/Contents/Applications/Application
 Loader.app/Contents/itms/java/lib/security/local_policy.jar	

	 (this	is	the	copy	of	Java	that	comes	with	Xcode.app)	

	 	
	 /Library/Internet
 Plug-Ins/JavaAppletPlugin.plugin/Contents/Home/lib/security/local_policy.jar

	 (this	is	Java	for	use	with	Safari)	

	 	
	 /Library/Java/JavaVirtualMachines/jdk1.8.0_121.jdk/Contents/Home/jre/lib/security/
 local_policy.jar

	 (this	is	the	installation	we	actually	want	to	enhance)	

	

So	on	our	Mac,	we	then	copied	the	Downloads/UnlimitedJCEPolicyJDK8/*.jar	files	over	to	

/Library/Java/JavaVirtualMachines/jdk1.8.0_121.jdk/Contents/Home/jre/lib/security/	

	

Those	various	pathnames	may	be	the	right	location	for	your	Mac,	too,	or	your	Java	runtime	may	be	located	

somewhere	else	entirely.	See	the	previously	mentioned	check	script	and	the	find	command	to	turn	up		

possible	locations	on	YOUR	system.	

	

Note:	You	may	need	to	use	sudo	or	be	root	when	copying	or	dragging-and-dropping	those	jar	files,	depending	

on	the	file	and	directory	permissions	of	the	destination.	

	

(b)	"What	Happens	If	I	DON'T/WON'T	Install	The	Strong	Crypto	File?"	

	

The	sample	GUI	code	won't	work	as	coded.	

	

(c)	"Why	Are	You	'Forcing'	Installation	Of	the	Strong	Crypto	Files?"	

	

This	is	a	bit	of	"codliver	oil,"	and	it's	for	your	own	good.	I'm	a	believer	in	encouraging	deployment	of	strong	

cryptography,	and	this	is	one	way	for	me	to	directly	advance	that	goal	in	a	Java-related	context.	Installing	

those	files	isn't	THAT	hard.	You	CAN	do	it,	really.	

	

(d)	"What	happens	when	I	upgrade	my	existing	version	of	Java	to	a	new	version	sometime	later?"	

	

The	unlimited	strength	crypto	policy	files	will	likely	be	over-written	with	default	strength	policy	files,	and	the	

unlimited	strength	crypto	policy	files	will	need	to	be	reinstalled.	

	

	 	

	 25	

XX.	Building	The	Scala	Code	

	

One	of	the	handy	things	about	using	sbt	to	build	Scala	programs	is	that	you	can	compile	and	run	our	sample	

code	by	just	changing	down	into	the	top-level	project	directory	and	then	saying	sbt	run			This	will	compile	your	

Scala	code,	and	if	there	are	no	errors,	it	will	then	proceed	to	automatically	run	it:	

	

Figure	23.	Compiling	and	Running	the	Scala	Example	

	
	 $ cd SampleScala
 $ sbt run

	

The	first	time	you	do	this,	you'll	probably	see	a	bunch	of	output	scroll	by	as	sbt	downloads	additional	libraries	

it	requires.	This	process	can	take	a	minute	or	two,	but	will	only	need	to	be	done	once,	so	please	be	patient.		

	

Once	the	Scala	code	has	been	compiled	and	begins	to	run,	you	should	see	a	window	that	looks	roughly	like	

this:	

	

Figure	24.	What	the	GUI	Interface	Looks	Like	When	Running	

	

	
	

The	GUI	is	now	running!	Good	job!	Note	that	the	text	in	green	near	the	top	of	the	window	will	tell	you	how	

many	queries	you	still	have	available	at	the	time	you	start	the	session	--	in	this	case,	the	client	is	running	with	

an	unlimited	API	key.	

	

	

	 26	

XXI.	Running	A	Query	and	Looking	At	The	Results	

	

We	can	then	try	running	a	sample	query.	Let's	find	all	RRname	records	known	for	*.uoregon.edu/ANY	for	the	

last	30	days:	

	

Figure	25.	GUI	Form	Used	To	Make	A	Query	for	*.uoregon.edu	for	the	last	30	days	

	

	
	

NOTE:	A	window	actually	full	of	results	will	NOT	be	automatically	be	displayed!	

	

We	need	to	go	explicitly	look	at	our	results	when	we're	ready	to	do	so...	Use	Finder	to	look	in	the		

dnsdb-output	directory	under	your	home	directory,	and	choose	today's	date	(or	if	you've	previously	done	

runs	on	another	day,	that	earlier	date).	You	can	then	double	click	on	particular	output	files	of	interest.	

	

	 	

	 27	

Figure	26.	Choose	An	Output	File	(In	This	Case,	We	Only	Have	One	Choice)	

	

	
		

NOTE:	To	see	the	CONTENTS	of	these	files,	DOUBLE	CLICK	on	it	as	you	would	any	other	text	file.	

	

In	this	case,	double	clicking	on	that	file	shows	us:	

	

Figure	27.	Text	Format	Results	for	One	DNSDB	Query	

	

	
	

	 	

	 28	

If	you	make	an	error,	you'll	be	told	about	it.	For	example:	

	

Figure	28.	Sample	Rdata	error.	

	

	
	

XXII.	Quitting	

	

To	quit	the	sample	Scala	program,	click	the	close	button	near	the	bottom	of	the	Window.	You	should	then	see	

a	small	confirmation	dialog	box.	Click	"Yes"	to	quit.	

	

Figure	29.	OK	To	Quit	Modal	Dialog	Window	

	

	
	

	 29	

XXIII.	Packaging	Our	Code	For	Routine	Use	Without	sbt	

	

Normally	you	won't	continue	to	run	Scala	programs	within	sbt	once	you're	done	developing	them.	Therefore,	

let's	package	up	a	jar	file	that	we	can	run	directly,	instead.	From	the	SampleScala	base	directory,	say:	

	

Figure	30.	Creating	A	Portable	jar	File	with	sbt	package	

	
	 $ sbt package

	

Once	that	finishes	running,	copy	target/scala-2.12/samplescala_2.12-1.0.jar	to	a	convenient	location,	such	as	

your	home	directory.	You	can	then	run	it	(assuming	you	have	Java	and	Scala	installed	on	your	system)	by	

saying:	

	

Figure	31.	Running	Our	Potable	Scala	jar	file	

	
	 $ scala ~/samplescala_2.12-1.0.jar

	

You	can	also	obviously	wrap	that	command	into	a	trivial	little	shell	script.	For	example,	in	my	case:	

	

Figure	32.	Creating	a	Shell	Script	To	Run	The	jar	file	

	
 $ cd ~

 $ nano query-gui
 #!/bin/sh
 /usr/local/bin/scala /Users/joe/SampleScala/target/scala-2.12/samplescala_2.12-
1.0.jar
 [control-o]
 [control-x]

 $ chmod a+rx query-gui

 $ sudo mv query-gui /usr/local/bin/.

	

Having	set	that	script	up,	and	assumng	that	/usr/local/bin	is	in	your	default	path,	you	can	then	run	the	Scala	

graphical	client	just	by	sayng:	

	

Figure	33.	Running	the	shell	script	

	
	 $ query-gui

	

This	is	the	end	of	what's	strictly	needed	for	you	to	use	the	GUI	Scala	DNSDB	Client.		

	

But	what	if	you	wanted	to	install	and	use	this	client	on	some	OTHER	Mac?		

	

Or	what	if	you	wanted	to	use	the	graphical	client	on	a	PC	running	Microsoft	Windows?		

	

Let's	go	on	to	Section	3.	

	

	 	

	 30	

SECTION	3.	Packaging	For	Use	on	3rd-Party	Macs	and	Windows	PCs	
	

XXIV.	Creating	A	dmg	Package	For	Use	on	A	3rd-Party	Mac	

	

To	produce	a	dmg
65	file	for	use	on	other	Macs,	we'll	use	sbt-native-packager.66	

	 	

To	use	sbt-native-packager,	the	build.sbt	file	in	the	project's	base	directory	must	include	the	line:	

	

Figure	34.	build.sbt	enablePlugin	command	

	
	 enablePlugins(JavaAppPackaging)

	

If	you	copied	your	build.sbt	file	from	the	Appendix	to	this	post,	that	line	should	already	be	present.	

	 	

Likewise,	if	you	followed	the	instructions	in	part	two,	you	should	already	also	have	a	file	called	`plugins.sbt`	in	

`SampleScala/project`	containing	the	line:	

	

Figure	35.	project/plugins.sbt		

	
	 addSbtPlugin("com.typesafe.sbt" % "sbt-native-packager" % "1.2.0-M8")

	

Make	sure	you're	in	the	SampleScala	base	directory,	then	run	the	packager	using	the	two	commands:	

	

Figure	36.	Running	the	packager	to	create	the	Mac	disk	image	

	
 $ sbt clean
 $ sbt universal:packageOsxDmg

	

When	the	packager	completes,	it	will	have	produced	the	file:	

	

Figure	37.	Name,	Location	and	file	details	of	the	disk	image	file	

	
	 SampleScala/target/universal/dmg/samplescala-1.0.dmg

 $ ls -l samplescala-1.0.dmg
 -rw-r--r--@ 1 joe staff 7340032 Apr 26 13:28 samplescala-1.0.dmg

 $ md5 samplescala-1.0.dmg
 MD5 (samplescala-1.0.dmg) = 2831654e048319a8b5d9126376c53b2b

 $ shasum -a 256 samplescala-1.0.dmg
 9ebe47a3ed22732694b3248b44467444cd534dec4d733df02dcd1f90aef6b2b3
 samplescala-1.0.dmg

Depending	on	whether	anything	has	been	updated	since	I	built	this	disk	image,	your	file	size	or	checksums	

may	vary	from	the	ones	shown	here.	

	

Anyhow,	that's	our	package	for	the	Mac.		

	

																																																								
65	https://en.wikipedia.org/wiki/Apple_Disk_Image	
66	http://www.scala-sbt.org/sbt-native-packager/	

	 31	

XXV.	Running	Our	dmg	On	A	3rd-Party	Mac	

	

To	use	our	package	on	some	other	Mac,	transfer	the	dmg	file	to	the	3rd	party	system	where	you	want	to	

install	the	application.	You	can	use	a	thumb	drive,	a	file	sharing	site,	or	send	it	as	an	email	attachment,	etc.	

	

IMPORTANT	NOTE:	In	order	for	that	file	to	work	on	the	third	party	system,	the	third	party	system	user	will		

still	need	to	have	Java	1.8	installed,	AND	they	will	need	to	have	the	Java	strong	crypto	policy	files	installed,	

AND	they	will	need	to	have	a	DNSDB	API	key	installed,	as	described	earlier	in	this	post.	

	 	

To	run	the	interface	on	the	third	party	system,	open	the	samplescala-1.0.dmg	package	by	double	clicking	on	it	

in	your	Finder.		

	

Select	the	resulting	volume.	(Not	seeing	volumes	in	your	Finder	window?	Check	to	make	sure		

Finder	-->	View	-->	Show	Sidebar	is	enabled)	

	

You	should	see	a	bin	and	lib	subdirectory:	

	

Figure	38.	Inside	our	open'd	sample-scala-1.0.dmg	file	

	

	
	

Go	down	into	the	bin	subdirectory	by	double	clicking	on	that	folder.	

	

Figure	39.	Inside	our	bin	directory	

	

	 	
	

Double	click	on	the	sample	scala	Unix	executable	to	run	it.	Proceed	as	"normal"	from	here	on	out.	

	

	 	

	 32	

XXVI.	Making	A	Microsoft	Windows	Installer	

	

While	the	preceding	has	all	been	done	on	the	Mac,	you	can	also	run	our	little	demo	Scala	GUI	interface	on	

Windows	PCs.	The	Mac	format	dmg	obviously	won't	work	on	a	Windows	PC,	but	we	could	build	a	PC	msi	

installer	that	we	could	use	under	Windows.	

	

To	produce	a	minimal	msi	installer	for	use	under	MS	Windows,	we'll	use	sbt-native-packager,	just	as	we	did	to	

create	our	Mac	dmg	file.	Note	that	in	order	to	create	the	MSI	file,	we	need	to	create	a	Scala	build	

environment	on	a	Windows	PC;	we	cannot	"cross	package"	our	product	for	the	Windows	PC	from	our	Mac.	

	

Therefore,	if	you	want	to	build	an	msi	installer,	dig	out	a	convenient	Windows	PC,	make	sure	it	is	patched	up	

to	date	and	fully	backed	up,	and	then	install	the	Windows	versions	of	

	

• Java
67
	

	

• Scala
68
	

	

• sbt,
69	and	

	

• The	Java	Unlimited	Crypto	Policy	Files.
70
	

	

When	it	comes	to	installing	the	Java	Strong	Crypto	Policy	Files	on	a	Windows	PC,	those	files	unzipped	into	the	

directory	shown	in	Figure	40	(at	least	on	our	borrowed	test	system):	

	

Figure	40.	Unzipped	strong	crypto	policy	files	(your	location	may	vary)	

	

	
	

	 	

																																																								
67	http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html	
68	https://www.scala-lang.org/download/	
69	http://www.scala-sbt.org/download.html	
70	http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html	

	 33	

We	copied	the	jar	files	from	that	temporary	directory	over	to	

`c:\Program	Files	(x86)\Java\jre1.8.0_121\lib\security`	

	

Figure	41.	Destination	for	the	strong	crypto	policy	files	(your	location	may	vary)	

	

	
	

Note:	depending	on	the	protective	features	active	on	your	system,	your	system	may	be	configured	to	limit	

your	ability	to	copy	those	files	to	where	you'd	like	to	install	them.	If	that	occurs,	use	an	account	with	

administrator	privileges,	or	see	your	local	Microsoft	system	administrator	for	assistance.	

	

We	will	also	need	to	have	your	DNSDB	API	key	installed	in	your	default	home	directory	in	.dnsdb-apikey.txt	

just	as	we	did	on	the	Mac.	Notepad	or	Word	are	fine	for	creating	that	file,	just	be	SURE	you	save	the		

.dnsdb-apikey.txt	file	as	a	plain	text	file!	

	

Finally,	you	will	also	need	one	additional	tool,	and	that's	Wixtoolset.71	

	

	 	

																																																								
71	http://wixtoolset.org/	

	 34	

For	the	purpose	of	building	the	Windows	installer,	ensure	that	you're	using	the	2nd	build.sbt	file	provided	

in	Appendix	I!	

	

Figure	42.	Windows-Specific	Bits	of	build.sbt	

	
enablePlugins(JavaAppPackaging)

enablePlugins(WindowsPlugin)

// CHANGE THIS
maintainer := "Your Name <youremail@sample.com>"
packageSummary := "dnsdbAPIexample"
packageDescription := """Demonstrate a DNSDB API GUI Interface"""

// CHANGE THIS
// get new unique GUIDs via https://www.guidgen.com/
wixProductId := "GuidHere"
wixProductUpgradeId := "anotherGuidHere"

	

Note	that	you	WILL	need	to	edit	that	file	to	plugin	YOUR	name	and	YOUR	email	address	on	the	maintainer	

line.	(Those	values	are	NOT	authenticated	and	are	NOT	trustworthy,	sadly,	so	don't	be	surprised	if	someday	

you	run	into	Cyrano	De	Bergerac	writing	installers)	

	

You	WILL	also	need	to	generate	unique	GUIDs	for	your	installer.	An	easy	way	to	get	those	is	by	visiting	

GUIDgen.com.
72	GUIDs	are	a	way	of	"fingerprinting"	an	installer	so	that	Windows	can	determine	whether	or	

not	it	thinks	it	has	already	seen/installed	a	given	package.	

	

Now	cd	to	the	"project"	directory	(e.g.,	SampleScala/project).	Be	sure	you've	got	a	plugins.sbt	containing	the	

line:	

	

Figure	43.	SampleScala/project/plugins.sbt	file	

	
 addSbtPlugin("com.typesafe.sbt" % "sbt-native-packager" % "1.2.0-M8")

	

This	file	MUST	be	in	the	specified	directory	and	MUST	have	the	specified	name.	

	

You	may	also	want	to	create	a	license	file	in	SampleScala/src/windows/License.rtf	,	at	least	if	your	first	try	at	

creating	an	msi	installer	generates	a	"Lor	ipsum"
73	license	rather	than	a	blank	window	(or	some	license	you	

actually	like,	whether	that's	an	Apache	2.0	license,	a	BSD	2-clause	license,	or	whatever).	

	

You	should	now	be	ready	to	actually	create	the	msi	installer.	From	the	SampleScala	directory,	run	the	

packager	with	the	commands:	

	

Figure	44.	Creating	the	`msi`	installer	

	
 $ sbt clean
 $ sbt windows:packageBin

	

																																																								
72	https://www.guidgen.com/	
73	https://en.wikipedia.org/wiki/Lorem_ipsum	

	 35	

When	the	packager	completes	after	a	minute	or	so,	it	will	have	produced	the	file	

SampleScala\target\windows\SampleScala.msi	

		

Figure	45.	Name,	Location	and	file	details	of	the	disk	image	file	

	
 5,943,296 octets
 MD5 = de36dd84e81b343473a61b5e03548bad
 sha256 = f3acf1f499dc66b0e097c0d9a5041154d50557021a10ba30239f9c635a00ed08

	

That's	the	MS	Windows	installer	for	our	little	sample	GUI	application.		

	

We've	tested	a	copy	of	an	msi	installer	built	this	way	and	it	was	been	found	to	work	on	both	Windows	10	and	

older	Windows	systems	(e.g.,	things	like	Windows	7	systems).	

	

XXVII.	Using	The	MS	Windows	Installer	On	A	3rd-Party	System	

	

To	use	the	msi	installer	on	a	3rd-party	system,	transfer	the	msi	file	to	the	3rd-party	system	where	you	want	to	

install	the	application	(by	thumb	drive,	file	share,	email,	etc.).		

	

IMPORTANT	NOTE	#1:	if	you	attempt	to	email	that	installer,	some	systems	will	routinely	flag/block	all	

executable	content	(including	msi	installers)	as	potentially	malicious.	Zipping	the	file	before	sharing	may	allow	

you	to	overcome	some	basic	email	content	filters	(obviously,	this	is	not	a	very	smart	antimalware	filter,	if	this	

"trick"	actually	works).	

	

The	msi	file	that	we	created	was	tested	on	VirusTotal74	and	scanned	cleanly.	You	should	always	check	any	

installer	you	make	(or	receive	from	someone	else!)	before	trusting	and	executing	it.	

	

IMPORTANT	NOTE	#2:	In	order	for	the	sample	scala	code	to	work	on	a	third	party	system,	the	third	party	

system	user	will	still	need	to:	

	

• Have	Java	1.8	installed,		

	

• Have	the	Java	strong	crypto	policy	files	installed,	and		

	

• Have	a	DNSDB	API	key	installed,		

	

all	as	described	earlier	in	this	white	paper.	

	

	 	

																																																								
74	https://www.virustotal.com/	

	 36	

A	typical	run	of	the	Windows	installer	will	look	something	like	the	following...	

	

Figure	46.	Installer	Opening	Screen...	

	

	
	

	

Figure	47.	Blank	License	Screen	(note	that	you	must	nonetheless	click	the	"accept"	box):	

	

	
	

	 37	

Figure	48.	The	custom	setup	box	can	just	be	clicked	through	(hit	next):	

	

	
	

	

Figure	49.	Now	hit	"Install"	to	do	it...	

	

	
	

	

	

	 38	

Figure	50.	Because	this	isn't	a	signed	executable	(note	the	"unknown	publisher")	you'll	typically	see	a	

warning:	

	

	
	

	

Figure	51.	Once	the	installation	completes,	you	will	see:	

	

	
	 	

	 39	

Figure	52.	The	executable	is	installed	in	the	following	location...	

	

	
	

	

Figure	53.	After	clicking	on	the	little	"gear"	icon	associated	with	the	batch	file,	our	GUI	interface	will	start:	

	

	
	

Note:	For	reasons	the	author	has	yet	to	identify,	there	are	subtle	differences	in	how	the	RRname	and	Rdata	

hbox	panels	render	color.	This	difference,	while	irritating,	is	purely	cosmetic	and	doesn't	negatively	affect	the	

usability	of	the	program.	

	

	 	

	 40	

Figure	54.	You	can	then	try	making	a	query	just	as	we	did	on	the	Mac:	

	

	
	

	

Figure	55.	Output	goes	to	a	file	in	dnsdb-output,	just	under	our	default	directory,	with	output	saved	under	the	

current	date	as	of	the	time	the	run	was	done:	

	

	
	

	

	 	

	 41	

Figure	56.	We	can	click	on	one	of	those	files	to	see	the	contents:	

	

	
	

	

Figure	57.	If	you	want	to	uninstall,	there's	even	an	uninstaller	created	by	the	`msi`	installer	(note	the	

dnsdbAPIexample	in	the	display)	

	

	
	

	 	

	 42	

XXVIII.	Miscellaneous	Notes	

	

A	few	closing	miscellaneous	notes	for	those	who	may	decide	to	try	writing	a	bit	of	Scala	themselves...	

	

Licenses:		

	

A	number	of	the	libraries	or	tools	used	in	this	article	are	subject	to	software	license	terms.	If	you	elect	to	use	

the	code	shown	here,	please	note	that	your	use	MUST	compote	with	the	licensing	terms	of	those	libraries	or	

tools.	

	

The	https://github.com/sbt/sbt-license-report	tool	states	that	it	can	produce	a	report	of	applicable	licenses.		

	

Running	this	license	reporting	tool	on	my	Scala	project,	I	received	the	following	license	report.	

	

Figure	58.	License	Report	

	

	
	

I've	included	a	copy	of	the	Scala	license	in	Appendix	V	to	this	post.	

	

Additional	licenses	to	potentially	be	aware	of	(their	applicability	and	impact	may	very	depending	on	what	you	

produce	and	how	you	use	or	distribute	what	you've	built,	but	please	note	that	I	am	not	a	lawyer,	and	that	this	

is	not	legal	advice):	

	

• Java	SE	Binary	Code	License
75
	

	

• sbt	License
76	

	

• Wixtoolset
77	

	

	 	

																																																								
75	http://www.oracle.com/technetwork/java/javase/terms/license/index.html	
76	https://github.com/sbt/sbt/blob/1.0.x/LICENSE	
77	http://wixtoolset.org/about/license/	

	 43	

For	its	own	open	source	programs	and	documentation	materials,	Farsight	customarily	applies	an	Apache	2.0	

license.	Thus,	formally:	

	

	 Copyright(c)	2017,	Farsight	Security,	Inc.	

	

	 Licensed	under	the	Apache	License,	Version	2.0	(the	"License");	you	may	not	use	this	code		

	 or	document	except	in	compliance	with	the	License.	You	may	obtain	a	copy	of	the	License	at	

	

	 http://www.apache.org/licenses/LICENSE-2.0	

	

	 Unless	required	by	applicable	law	or	agreed	to	in	writing,	software	distributed	under	the		

	 License	is	distributed	on	an	"AS	IS"	BASIS,	WITHOUT	WARRANTIES	OR	CONDITIONS	OF		

	 ANY	KIND,	either	express	or	implied.	See	the	License	for	the	specific	language	governing		

	 permissions	and	limitations	under	the	License.	

	

	

Cleaning	Up	the	Formatting	Of	Your	Scala	Code:	

	

If	you're	writing	Scala	code	manually,	it's	easy	to	end	up	with	gnarly-looking	mis-formatted	code.		

	

scalafmt
78
	makes	it	easy	to	turn	a	mess	into	readily-read-and-understood	code	(and	it	can	be	a	lifesaver	when	

it	comes	to	tracking	down	missing	or	superfluous	curly	braces,	too).		

	

After	installing	the	formatter	as	described	at	the	scalafmt	home	page,	save	a	copy	of	your	original	source	file	

(just	in	case	you	accidetally	manage	to	mess	things	up	while	using	a	new	tool),	then	try:	

	

Figure	59.	Sample	reformatting	of	Scala	source	code	

	
$ scalafmt --stdin < src/main/scala/SampleScala.scala > src/main/scala/SampleScala.reformatted

	

	

Cleaning	Up	Unused	Code	(and	Vars	That	Should	Be	Turned	Into	Vals,	and	Unneeded	Imports,	and	

Suboptimal	Usages,	and...)	

	

If	you	experiment	with	various	alternative	approaches	when	building	your	Scala	code,	it's	easy	to	end	up	with	

unused	code,	vars	that	could/should	be	rewritten	as	vals,	and	unneeded	import	statements	among	other	

things.		

	

To	find	at	least	some	of	those,	try	running	scalac	(the	Scala	compiler)	directly	with	the		

-Ywarn-unused	-Ywarn-unused-import	-Xlint	flags	set:	

	

Figure	60.	Sample	quest	for	unneeded	imports	

	
$ scalac -Ywarn-unused -Ywarn-unused-import -Xlint src/main/scala/SampleScala.scala

	

	

																																																								
78	http://scalameta.org/scalafmt/	

	 44	

XXIX.	What	DIDN'T	We	Do?	

	

There	are	a	number	of	things	that	we	could	have	done	(but	didn't	do)	in	writing	this	code,	including:	

	

• The	example	didn't	send	output	to	a	graphical	window,	just	to	a	file.	Sanely	handling	a	graphical	

window	that	may	contain	up	to	a	million	observations	is	non-trivial.	

	

• We	used	Swing	instead	of	JavaFX.	

	

• We	didn't	use	a	classical	LayoutManager	

	

• We	made	no	attempt	at	interface	internationalization	(e.g.,	making	a	German	or	Russian	or	Chinese	

version	of	the	app	would	require	manual	changes	to	embedded	English	string	literals).	

	

• We	made	no	effort	to	support	internationalized	domains	(e.g.,	no	display	of	Cyrillic	or	Kanji	domains	

using	Punycode).	

	

• We	did	not	create	integrated	facilities	for	installing	and	managng	API	keys	(we	just	assume	you've	

create	the	required	file	in	the	specified	location).	

	

• We	did	not	include	an	Edit	menu	with	copy/cut/paste/select	all/etc.,	nor	GUI-accessible	preferences	

for	things	like	fonts,	font	sizes,	foreground/background	colors.	

	

• We	did	not	include	GUI	"rollover	help"	("tool	tips")	nor	online	help/documentation	at	all	for	that	

matter.	

	

• We	only	offer	basic	time	fencing	(just	a	simple	"how	many	days	back?"	model)	

	

• Nor	did	we	include	raw	hex	rdata	query79	support	

	

• We	did	not	build	in	support	for	proxies,	for	those	who	work	in	an	environment	where	sending	all	traffic	

through	a	proxy	server	is	required.	

	

• We	only	did	limited	error	checking/exception	handling	and	reporting	(we	didn't	bother	catching	and	

handling	most	potential	errors)	

	

• We	didn't	create	any	explicit	unit	tests	

	

• We	didn't	create	digitally-signed	installers	

	

• We	didn't	automatically	resolve	any	missing	dependencies	as	part	of	our	installation	process.	

	

Maybe	you'd	like	to	try	taking	the	starting	code	we	provided,	modifying	it	to	address	one	or	more	of	these	

deficiencies?	

																																																								
79	https://www.farsightsecurity.com/2016/11/25/stsauver-dnsdb-rawhex/	

	 45	

	

XXX.	Conclusion	

	

Nonetheless,	even	with	all	those	limitations,	you've	now	seen	an	example	of	how	to	create	a	basic	RESTful	

client	in	Scala	for	use	with	DNSDB.		

	

There's	obviously	lots	more	that	could	be	done	to	extend	this	example,	but	this	white	paper	at	least	serves	to	

illustrate	the	basics	of	building	a	DNSDB	API	GUI	application,	and	the	power	of	Scala.	Maybe	it	will	even	tempt	

you	to	learn	a	new	programming	language,	Scala?	

	

If	you	have	feedback,	comments	or	questions	about	this	article,	feel	free	to	contact	the	author	at	

stsauver@fsi.io	

	

	

Acknowledgements	

	

The	author	gratefully	acknowledges	the	reviews,	suggestions,	and	testing	assistance	received	from	his	Farsight	

colleagues,	including	(in	alphabetcal	order	by	last	name)	Mr.	Ben	April,	Mr.	Larry	Pitman	and	Mr.	Erik	Wu.		

	

Any/all	residuals	issues	are	the	sole	responsibility	of	the	author.	

	

	 46	

Appendix	I:	The	SampleScala/build.sbt	file	

	

If	you	only	care	about	building	the	sample	GUI	application	on	the	Mac,	use	this	build.sbt	file	
	

name := "SampleScala"

version := "1.0"

scalaVersion := "2.12.1"

cancelable in Global := true

fork in run := true

connectInput in run := true

enablePlugins(JavaAppPackaging)

// https://mvnrepository.com/artifact/org.scala-lang.modules/scala-swing_2.12
libraryDependencies += "org.scala-lang.modules" % "scala-swing_2.12" % "2.0.0"

If you are on a PC running Microsoft Windows and want to build a Windows installer,
use this build.sbt INSTEAD. Note that you will need to set some values as indicated
below before you'll be able to use this file!

name := "SampleScala"

version := "1.0"

scalaVersion := "2.12.1"

cancelable in Global := true

fork in run := true

connectInput in run := true

enablePlugins(JavaAppPackaging)

enablePlugins(WindowsPlugin)

// CHANGE THIS
maintainer := "Your Name <youremail@sample.com>"
packageSummary := "dnsdbAPIexample"
packageDescription := """Demonstrate a DNSDB API GUI Interface"""

// CHANGE THIS
// get new unique GUIDs via https://www.guidgen.com/
wixProductId := "GuidHere"
wixProductUpgradeId := "anotherGuidHere"

// https://mvnrepository.com/artifact/org.scala-lang.modules/scala-swing_2.12
libraryDependencies += "org.scala-lang.modules" % "scala-swing_2.12" % "2.0.0"

	 47	

Appendix	II.	SampleScala/src/main/scala/SampleScala.scala	

	
package dnsdbexample

import java.io._
import java.net._
import java.text._
import java.util._
import javax.crypto.Cipher
import javax.swing._
import javax.swing.JFrame._
import scala._
import scala.io._
import scala.swing._
import swing._
import swing.event._
import Swing._

// -----------------

class UIoutput(var frameTitle: String, fileLocation: String, MyBoxColor: Color)
 extends Frame {

 // Create a new wide and short window for posting one-line log-like info
 // (can be closed without affecting the main window)

 preferredSize = new Dimension(760, 60)
 setDefaultLookAndFeelDecorated(true)

 title = frameTitle // passed in as a parameter

 contents = new BoxPanel(Orientation.Horizontal) {
 // Adding the BoxPanel lets me left-justify the label
 background = MyBoxColor // passed in as a parameter
 contents += Swing.HStrut(10) // preserve a left margin

 contents += new Label {
 text = fileLocation // passed in as a parameter
 val myFont = "Monospaced"
 val myFontSize = 16
 font = new Font(myFont, java.awt.Font.PLAIN, myFontSize)
 }

 contents += Swing.HGlue // left justify
 contents += Swing.HStrut(10) // preserve a right margin
 }
}

// -----------------

class UI extends MainFrame {
 // Our main window. Closing it will kill the application

 title = "DNSDB API DEMO CLIENT IN Scala"

 setDefaultLookAndFeelDecorated(true)

 val myFont = "Monospaced"
 System.setProperty("awt.font", myFont)

 val myFontSize = 16

 var myFontTitleSize = (myFontSize * 1.5)

	 48	

 // this is a light grayish color for the background
 val c537 = new Color(187, 199, 214)

 // this is a light green color for suggesting success
 val greenTint = new Color(204, 255, 179)

 // this is a light orange color for suggesting potential problems
 val orangeTint = new Color(255, 165, 0)

 // this is a light red color for suggesting a problem
 val redTint = new Color(255, 64, 0)

 // GUI spacing factors
 val borderMargin = 20
 val verticalSpaceBetweenItems = 10
 val bigVerticalSpaceBetweenItems = 30

 // popup window's inital location -- toward the top, over a ways
 var xcoord: Int = 400
 var ycoord: Int = 50

 // save these values for when we wrap around eventually
 val resetxcoord = xcoord
 val resetycoord = ycoord

 // set limits for max x and y position
 val xcoordMax: Int = 600
 val ycoordMax: Int = 600

 // bump per iteration
 val bumpIt: Int = 25

 // End of line in Unix = \n
 // End of line in Windows = \r\n
 // MS Word and WordPad can cope with \n, but the default Windows text
 // file editor, Notepad, fails to cope, so let's do the right thing here
 val nl = System.getProperty("line.separator").toString();

 var limit0: String = ""
 var remaining0: String = ""

 // DNSDB domain or IP
 object myinput extends swing.TextField {
 columns = 24
 maximumSize = new Dimension(32, 24)
 font = new Font(myFont, java.awt.Font.PLAIN, myFontSize)
 }

 // Bailiwick (used for RRname only)
 object myinput2 extends swing.TextField {
 columns = 24
 maximumSize = new Dimension(32, 24)
 font = new Font(myFont, java.awt.Font.PLAIN, myFontSize)
 }

 // Record data (used for Rdata only)
 object myinput3 extends swing.TextField {
 columns = 24
 maximumSize = new Dimension(32, 24)
 font = new Font(myFont, java.awt.Font.PLAIN, myFontSize)
 }

	 49	
 // Max results to return
 object maxresults extends swing.TextField {
 columns = 7
 maximumSize = new Dimension(5, 24)
 font = new Font(myFont, java.awt.Font.PLAIN, myFontSize)
 }

 // Timefence
 object gobackhowmanydays extends swing.TextField {
 columns = 5
 maximumSize = new Dimension(5, 24)
 font = new Font(myFont, java.awt.Font.PLAIN, myFontSize)
 }

 // Radio button group

 val rrname = new RadioButton {
 text = "RRname"
 font = new Font(myFont, java.awt.Font.PLAIN, myFontSize)
 }

 val rdata = new RadioButton {
 text = "Rdata"
 font = new Font(myFont, java.awt.Font.PLAIN, myFontSize)
 }

 // only one or the other button can be checked
 val mutex = new swing.ButtonGroup(rrname, rdata)

 // Radio button group ends

 // Radio button group

 val textformat = new RadioButton {
 text = "Text"
 font = new Font(myFont, java.awt.Font.PLAIN, myFontSize)
 selected = true
 }

 val jsonformat = new RadioButton {
 text = "JSON"
 font = new Font(myFont, java.awt.Font.PLAIN, myFontSize)
 }

 val mutex2 = new swing.ButtonGroup(textformat, jsonformat)

 // Radio button group ends

 // Radio button group

 val nameinputmode = new RadioButton {
 text = "Name"
 font = new Font(myFont, java.awt.Font.PLAIN, myFontSize)
 }

 val ipOrNetworkMode = new RadioButton {
 text = "IP, CIDR or Range"
 font = new Font(myFont, java.awt.Font.PLAIN, myFontSize)
 }

 val notSet = new RadioButton {
 text = "(neither)"
 font = new Font(myFont, java.awt.Font.PLAIN, myFontSize)

	 50	
 selected = true
 }

 val mutex4 = new swing.ButtonGroup(nameinputmode, ipOrNetworkMode, notSet)

 // Radio button group ends

 // now do the drop down box to allow us to select the recordtype we want
 val rectype = new swing.ComboBox(
 scala.List("ANY",
 "ANY-DNSSEC",
 "A",
 "AAAA",
 "NS",
 "CNAME",
 "DNAME",
 "PTR",
 "MX",
 "SRV",
 "TXT",
 "DS",
 "RRSIG",
 "NSEC",
 "DNSKEY",
 "NSEC3",
 "TLSA",
 "URI"))

// -----------------

 // When we start, make sure we have quota left...
 check_Remaining_quota

 // put up the main GUI form now
 do_GUI_form

// -----------------

 reactions += {
 case ButtonClicked(button) => {
 mutex.selected.get match {
 case `rrname` => {
 rrname.selected = true
 rdata.selected = false
 notSet.selected = true
 repaint()
 }
 case `rdata` => {
 rdata.selected = true
 notSet.selected = true
 repaint()
 }
 }
 }
 } // end of reactions

// -----------------

 def myClose() {
 val res = scala.swing.Dialog.showConfirmation(
 contents.head,
 "OK to quit now?",
 optionType = scala.swing.Dialog.Options.YesNo,

	 51	
 title = title)
 if (res == scala.swing.Dialog.Result.Ok) sys.exit(0)
 } // end of myClose

// -----------------

 def APIfileDoesntExist() {
 contents = new BoxPanel(Orientation.Vertical) {
 background = c537
 // val res = scala.swing.Dialog.showConfirmation(
 scala.swing.Dialog.showConfirmation(
 contents.head,
 ".dnsdb-apikey.txt isn't in default home directory. Must Exit Now",
 optionType = scala.swing.Dialog.Options.YesNo,
 title = title)
 sys.exit(0)
 }
 } // end of APIfileDoesntExist

// -----------------

 def reset_vals() {
 rectype.selection.item = "ANY"
 myinput.text = ""
 myinput2.text = ""
 myinput3.text = ""
 maxresults.text = ""
 gobackhowmanydays.text = ""
 mutex.select(`rrname`)
 mutex2.select(`textformat`)
 mutex4.select(`notSet`)
 }

// -----------------

 def check_Remaining_quota() {

 System.setProperty("https.cipherSuites",
 "TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384")
 System.setProperty("jdk.tls.ephemeralDHKeySize", "4096")

 val homeDir0 = System.getProperty("user.home")
 val apiKey0 = ".dnsdb-apikey.txt"
 val apiPath0 = homeDir0 + "/" + apiKey0

 val filename0 = apiPath0
 var myLine0 = ""
 for (line0 <- Source.fromFile(filename0).getLines()) {
 myLine0 = line0
 }

 val checkURL0: String = "https://api.dnsdb.info/lookup/rate_limit"
 val myurl0 = new URL(checkURL0)
 val con0 = myurl0.openConnection.asInstanceOf[HttpURLConnection]

 con0.setRequestProperty("X-API-Key", myLine0)
 con0.setRequestProperty("User-Agent",
 "Demo Scala DNSDB API Client v1.0 Quota Check")
 con0.setRequestProperty("Accept", "text/plain")
 con0.setRequestMethod("GET")
 con0.setConnectTimeout(3000)
 con0.setReadTimeout(3000)
 con0.connect()

	 52	
 val responseCode0 = con0.getResponseCode()

 if (responseCode0 == 404) {
 // println("Quota check URL not found" + nl)
 } else if (responseCode0 == 400) {
 // println("Quota check URL formatted incorrectly" + nl)
 } else if (responseCode0 == 403) {
 // println("X-API-Key header not present or wrong" + nl)
 limit0 = "DNSDB API key (in .dnsdb-apikey.txt) is missing or invalid"
 } else if (responseCode0 == 500) {
 println("Error processing quota check request" + nl)
 } else if (responseCode0 == 200) {
 val ins0: InputStream = con0.getInputStream()
 val isr0: InputStreamReader = new InputStreamReader(ins0)
 val in0: BufferedReader = new BufferedReader(isr0)

 // ignore three lines
 var lines0 = in0.readLine.mkString
 lines0 = in0.readLine.mkString
 lines0 = in0.readLine.mkString

 // fourth line = limit (we want this one)
 lines0 = in0.readLine.mkString
 lines0 = lines0.replace("\"limit\":","")
 lines0 = lines0.replace(" ","")
 lines0 = lines0.replace(",","")
 limit0 = lines0

 // fifth line = remaining (we want that one, too)
 lines0 = in0.readLine.mkString
 lines0 = lines0.replace("\"remaining\":","")
 lines0 = lines0.replace(" ","")
 remaining0 = lines0

 // dump six and seventh lines
 lines0 = in0.readLine.mkString
 lines0 = in0.readLine.mkString

 in0.close()
 }
 }

// -----------------

 def do_GUI_form() {

 System.setProperty("apple.laf.useScreenMenuBar", "true");
 System.setProperty("com.apple.mrj.application.apple.menu.about.name", "SampleScala");
 UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName());

 contents = new BoxPanel(Orientation.Vertical) {
 background = c537
 contents += Swing.VStrut(borderMargin)

 // Title
 contents += new BoxPanel(Orientation.Horizontal) {
 background = c537
 contents += Swing.HStrut(borderMargin)
 contents += Swing.HGlue
 contents += new swing.Label {
 text = "DNSDB API DEMO CLIENT IN SCALA"
 font = new Font(myFont, java.awt.Font.BOLD, myFontSize)
 }

	 53	
 contents += Swing.HGlue
 contents += Swing.HStrut(borderMargin)
 }
 contents += Swing.VStrut(bigVerticalSpaceBetweenItems)

 // Quota Report
 contents += new BoxPanel(Orientation.Horizontal) {
 background = c537
 contents += Swing.HStrut(borderMargin)
 contents += new swing.Label {

 if (limit0 == "unlimited") {
 text = "Queries/day: Unlimited"
 // this is a positive green color
 foreground = new Color(0, 102, 0)
 } else if (limit0 == "DNSDB API key (in .dnsdb-apikey.txt) is missing or
invalid") {
 text = "DNSDB API key (in .dnsdb-apikey.txt) is missing or invalid"
 // this is a negative red color
 foreground = new Color(179, 0, 0)
 } else {
 text = "Queries/day: " + limit0 + " " +
 "Remaining: " + remaining0
 if (remaining0 == "0") {
 // this is a negative red color
 foreground = new Color(179, 0, 0)
 } else {
 // this is a positive green color
 foreground = new Color(0, 102, 0)
 }
 }

 font = new Font(myFont, java.awt.Font.PLAIN, myFontSize)

 }
 contents += Swing.HGlue
 contents += Swing.HStrut(borderMargin)
 }
 contents += Swing.VStrut(bigVerticalSpaceBetweenItems)

 // Search Mode
 contents += new BoxPanel(Orientation.Horizontal) {
 background = c537
 contents += Swing.HStrut(borderMargin)
 contents += new swing.Label {
 text = "Search: "
 font = new Font(myFont, java.awt.Font.PLAIN, myFontSize)
 }
 contents += new BoxPanel(Orientation.Horizontal) {
 contents += rrname
 // this is a light blue color
 background = new Color(204, 255, 255)
 }
 contents += Swing.HGlue
 contents += Swing.HStrut(borderMargin)
 }
 rrname.selected = true
 contents += Swing.VStrut(10)
 contents += new BoxPanel(Orientation.Horizontal) {
 background = c537
 contents += Swing.HStrut(100)
 contents += new BoxPanel(Orientation.Horizontal) {
 contents += rdata

	 54	
 contents += Swing.HStrut(5)
 contents += new swing.Label {
 text = "=>"
 font = new Font(myFont, java.awt.Font.PLAIN, myFontSize)
 }
 contents += nameinputmode
 contents += Swing.HStrut(5)
 contents += ipOrNetworkMode
 contents += Swing.HStrut(5)
 contents += notSet
 contents += Swing.HStrut(5)
 // this is a light purple color
 background = new Color(229, 204, 255)
 }
 contents += Swing.HStrut(borderMargin)
 contents += Swing.HGlue
 background = c537
 }
 contents += Swing.VStrut(bigVerticalSpaceBetweenItems)

 // Record Type
 contents += new BoxPanel(Orientation.Horizontal) {
 background = c537
 contents += Swing.HStrut(borderMargin)
 contents += new swing.Label {
 text = "Record Type:"
 font = new Font(myFont, java.awt.Font.PLAIN, myFontSize)
 }
 contents += Swing.HStrut(5)
 contents += rectype
 contents += Swing.HGlue
 }
 contents += Swing.VStrut(verticalSpaceBetweenItems)

 // Domain text box
 contents += new BoxPanel(Orientation.Horizontal) {
 background = c537
 contents += Swing.HStrut(borderMargin)
 contents += new swing.Label {
 text = "Query Term: "
 font = new Font(myFont, java.awt.Font.PLAIN, myFontSize)
 }
 contents += Swing.HStrut(5)
 contents += myinput
 contents += Swing.HGlue
 contents += Swing.HStrut(borderMargin)
 }
 contents += Swing.VStrut(bigVerticalSpaceBetweenItems)

 // Separate the optional stuff
 contents += new BoxPanel(Orientation.Horizontal) {
 background = c537
 contents += Swing.HStrut(borderMargin)
 contents += new swing.Label {
 text = "Optional... "
 font = new Font(myFont, java.awt.Font.ITALIC, myFontSize)
 }
 contents += Swing.HGlue
 contents += Swing.HStrut(borderMargin)
 }
 contents += Swing.VStrut(verticalSpaceBetweenItems)

 // Bailiwick text box

	 55	
 contents += new BoxPanel(Orientation.Horizontal) {
 background = c537
 contents += Swing.HStrut(borderMargin)
 contents += new swing.Label {
 text = "Bailiwick: "
 font = new Font(myFont, java.awt.Font.PLAIN, myFontSize)
 }
 contents += Swing.HStrut(5)
 contents += myinput2
 contents += Swing.HStrut(borderMargin)
 contents += Swing.HGlue
 }
 contents += Swing.VStrut(verticalSpaceBetweenItems)

 // Max results
 contents += new BoxPanel(Orientation.Horizontal) {
 background = c537
 contents += Swing.HStrut(borderMargin)
 contents += new swing.Label {
 text = "Max Results:"
 font = new Font(myFont, java.awt.Font.PLAIN, myFontSize)
 }
 contents += Swing.HStrut(5)
 contents += maxresults
 contents += Swing.HGlue
 }
 contents += Swing.VStrut(verticalSpaceBetweenItems)

 // Time window
 contents += new BoxPanel(Orientation.Horizontal) {
 background = c537
 contents += Swing.HStrut(borderMargin)
 contents += new swing.Label {
 text = "Days Back? "
 font = new Font(myFont, java.awt.Font.PLAIN, myFontSize)
 }
 contents += Swing.HStrut(5)
 contents += gobackhowmanydays
 contents += Swing.HGlue
 }
 contents += Swing.VStrut(verticalSpaceBetweenItems)

 // Output format: Text or JSON?
 contents += new BoxPanel(Orientation.Horizontal) {
 background = c537
 contents += Swing.HStrut(borderMargin)
 contents += new swing.Label {
 text = "Format: "
 font = new Font(myFont, java.awt.Font.PLAIN, myFontSize)
 }
 contents += Swing.HStrut(5)
 contents += textformat
 contents += Swing.HStrut(5)
 contents += jsonformat
 contents += Swing.HGlue
 }
 contents += Swing.VStrut(bigVerticalSpaceBetweenItems)

 // search/reset/close
 contents += new BoxPanel(Orientation.Horizontal) {
 background = c537
 contents += Swing.HStrut(borderMargin)
 contents += swing.Button("Search") {

	 56	
 restExample()
 }
 contents += swing.Button("Reset") {
 reset_vals()
 }
 contents += swing.Button("Close") {
 myClose()
 }
 contents += Swing.HGlue
 contents += Swing.HStrut(borderMargin)
 }
 contents += Swing.VStrut(bigVerticalSpaceBetweenItems)

 contents += new BoxPanel(Orientation.Horizontal) {
 background = c537
 contents += Swing.HStrut(borderMargin)
 contents += Swing.VStrut(10)

 contents += Swing.VStrut(verticalSpaceBetweenItems)
 } // end of vertical Frame

// -----------------

 def setBoxLoc() {

 xcoord += bumpIt
 if (xcoord >= xcoordMax) { xcoord = resetxcoord }

 ycoord += bumpIt
 if (ycoord >= ycoordMax) { ycoord = resetycoord }

 }

 // http://alvinalexander.com/blog/post/java/simple-https-example
 def restExample() {
 System.setProperty("https.cipherSuites",
 "TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384")
 System.setProperty("jdk.tls.ephemeralDHKeySize", "4096")

 // assume we're good to proceed; we'll then check...
 var goodToOutput = true

 var httpsURL: String = "https://api.dnsdb.info/lookup/"

 // We need a query term. Did they specify one?
 if (myinput.text.length == 0) {
 val myNewWindow = new UIoutput("Query missing...",
 "Please supply a Query Term...",
 redTint)
 setBoxLoc()
 goodToOutput = false
 myNewWindow.location = new Point(xcoord, ycoord)
 myNewWindow.pack()
 myNewWindow.visible = true
 } else {
 // continue processing...

 // base RESTFUL URL
 if (rrname.selected == true) {
 httpsURL = httpsURL + "rrset/name/"
 // add on domain and recordtype
 httpsURL = httpsURL + myinput.text + "/" + rectype.selection.item
 // do we have a bailiwick? If so, add it on as well

	 57	
 if (myinput2.text.length > 0) {
 httpsURL = httpsURL + "/" + myinput2.text
 }
 } else if ((rdata.selected == true) &&
 (nameinputmode.selected == true)) {
 httpsURL = httpsURL + "rdata/name/"
 // add on domain and recordtype
 httpsURL = httpsURL + myinput.text + "/" + rectype.selection.item
 } else if ((rdata.selected == true) &&
 (ipOrNetworkMode.selected == true)) {
 httpsURL = httpsURL + "rdata/ip/"
 var tempstring = myinput.text
 tempstring = tempstring.replace("/", ",")
 // add on IP or CIDR and recordtype
 httpsURL = httpsURL + tempstring + "/" + rectype.selection.item
 } else if ((rdata.selected == true) &&
 (notSet.selected == true)) {
 val myNewWindow = new UIoutput(
 "Rdata query type missing...",
 "Rdata query requires selecting either 'Name' OR 'IP, CIDR or range'...",
 redTint)
 goodToOutput = false
 setBoxLoc()
 myNewWindow.location = new Point(xcoord, ycoord)
 myNewWindow.pack()
 myNewWindow.visible = true
 }

 var delimiter: String = "?" // first param

 // are we limiting results returned?
 if ((maxresults.text.length > 0) &&
 (maxresults.text.toInt > 0) &&
 (maxresults.text.toInt <= 1000000)) {
 httpsURL = httpsURL + delimiter + "limit=" + maxresults.text
 delimiter = "&" // ampersand
 } else if (maxresults.text.length == 0) {
 // not specifying max results
 } else {
 val myNewWindow = new UIoutput(
 "Max Results Error...",
 "maxresults must be 1 <= maxresults <= 1000000; using default of 10000",
 orangeTint)
 setBoxLoc()
 myNewWindow.location = new Point(xcoord, ycoord)
 myNewWindow.pack()
 myNewWindow.visible = true
 }

 // are we time fencing?
 if ((gobackhowmanydays.text.length > 0) &&
 (gobackhowmanydays.text.toLong > 0) &&
 (gobackhowmanydays.text.toLong < 3650)) {
 // convert days to seconds
 val nowUnixSeconds: Long = (gobackhowmanydays.text).toLong *
 (24 * 60 * 60)
 // time fence parameter is "time_last_after="
 httpsURL = httpsURL + delimiter + "time_last_after=-" + nowUnixSeconds
 delimiter = "&"
 } else if (gobackhowmanydays.text.length == 0) {
 // not time fencing
 } else {
 val myNewWindow = new UIoutput(

	 58	
 "Time Fencing Error...",
 "maxdaysback must be 1 to 3650 integer days; doing NO time fencing",
 orangeTint)
 setBoxLoc()
 myNewWindow.location = new Point(xcoord, ycoord)
 myNewWindow.pack()
 myNewWindow.visible = true
 }

 val myurl = new URL(httpsURL)

 // handle creating the output file
 // target $HOME/dnsdb-output/$DATE/$TIME-$QUERY.txt

 // this is user's home diretory + /dnsdb-output
 var homeDir = System.getProperty("user.home")
 homeDir = homeDir + "/dnsdb-output"

 // now add a subdirectory, y/m/d format
 val now = Calendar.getInstance().getTime()
 val dateFormat = new SimpleDateFormat("yyyy-MM-dd")
 val myDate = dateFormat.format(now)
 homeDir = homeDir + "/" + myDate
 val f: File = new File(homeDir)
 f.mkdirs()

 // now build the filename (time + querystring + rectype + .txt)
 val timeFormat = new SimpleDateFormat("HHmmss")
 val myTime = timeFormat.format(now)
 var tempstring2 = myinput.text
 // fix awkwardness in potential filenames
 tempstring2 = tempstring2.replace("/", ",")
 tempstring2 = tempstring2.replace(":", "#")
 tempstring2 = tempstring2.replace("*", "STAR")
 val outputPath = homeDir + "/" + myTime + "-" + tempstring2 + ".txt"
 val f2: File = new File(outputPath)

 val pw: PrintWriter = new PrintWriter(
 new FileOutputStream(f2, false /* append = true */))

 val con = myurl.openConnection.asInstanceOf[HttpURLConnection]

 homeDir = System.getProperty("user.home")
 val apiKey = ".dnsdb-apikey.txt"
 val apiPath = homeDir + "/" + apiKey

 val filename = apiPath
 var myLine = ""
 for (line <- Source.fromFile(filename).getLines()) {
 myLine = line
 }

 con.setRequestProperty("X-API-Key", myLine)
 con.setRequestProperty("User-Agent",
 "Demo Scala DNSDB API Client v1.0")

 if (mutex2.selected.get == `jsonformat`) {
 con.setRequestProperty("Accept", "application/json")
 } else if (mutex2.selected.get == `textformat`) {
 con.setRequestProperty("Accept", "text/plain")
 }

 con.setRequestMethod("GET")

	 59	
 con.setConnectTimeout(3000)
 con.setReadTimeout(3000)

 var responseCode = 9999 // assume we couldn't do the query by default

 if (goodToOutput == true) {
 con.connect()
 responseCode = con.getResponseCode()
 }

 if (responseCode == 404) {
 val myNewWindow =
 new UIoutput("Query Error...", "No records found", redTint)
 setBoxLoc()
 myNewWindow.location = new Point(xcoord, ycoord)
 myNewWindow.pack()
 myNewWindow.visible = true

 } else if (responseCode == 400) {
 val myNewWindow = new UIoutput("Query Error...",
 "URL formatted incorectly",
 redTint)
 setBoxLoc()
 myNewWindow.location = new Point(xcoord, ycoord)
 myNewWindow.pack()
 myNewWindow.visible = true
 } else if (responseCode == 403) {
 val myNewWindow = new UIoutput(
 "Query Error...",
 "X-API-Key header not present or wrong",
 redTint)
 setBoxLoc()
 myNewWindow.location = new Point(xcoord, ycoord)
 myNewWindow.pack()
 myNewWindow.visible = true
 } else if (responseCode == 429) {
 val myNewWindow = new UIoutput("Query Error...",
 "API daily key quota exceeded",
 redTint)
 setBoxLoc()
 myNewWindow.location = new Point(xcoord, ycoord)
 myNewWindow.pack()
 myNewWindow.visible = true
 } else if (responseCode == 429) {} else if (responseCode == 500) {
 println("Error processing request" + nl)
 } else if (responseCode == 503) {
 val myNewWindow = new UIoutput("Query Error...",
 "Too many concurrent queries",
 redTint)
 setBoxLoc()
 myNewWindow.location = new Point(xcoord, ycoord)
 myNewWindow.pack()
 myNewWindow.visible = true

 } else if ((responseCode == 200) && (goodToOutput == true)) {
 val myNewWindow =
 new UIoutput("Output is being sent to... (please be patient for large
queries!)", outputPath, greenTint)
 setBoxLoc()
 myNewWindow.location = new Point(xcoord, ycoord)
 myNewWindow.pack()
 myNewWindow.visible = true

	 60	
 val ins: InputStream = con.getInputStream()
 val isr: InputStreamReader = new InputStreamReader(ins)
 val in: BufferedReader = new BufferedReader(isr)
 var ok = true

 while (ok) {
 val lines = in.readLine.mkString
 ok = lines != null
 if (ok) {
 // println(lines + nl)
 pw.write(lines + nl)
 }
 }

 // println(nl)
 pw.write(nl)

 in.close()
 pw.close()

 }
 // update available quota
 check_Remaining_quota
 } // end of UI
 }
 }
 }
}

// -----------------

class UIerror extends MainFrame {
 contents = new BoxPanel(Orientation.Vertical) {
 contents += new Label {
 text = " "
 }
 }
 val res = Dialog.showConfirmation(
 contents.head,
 ".dnsdb-apikey.txt file in the default home directory should be\nexactly 64
characters long (disregarding end-of-line characters).\n\nIT'S NOT. Cannot
continue.\n\nHit either button to exit. Fix the file, then try again.",
 optionType = Dialog.Options.OkCancel,
 title = "ERROR!"
)
 if (res == Dialog.Result.Ok)
 sys.exit(0)
 else
 sys.exit(0)
} // end of UIerror

// -----------------

class UIerror2 extends MainFrame {
 contents = new BoxPanel(Orientation.Vertical) {
 contents += new Label {
 text = " "
 }
 }
 val res = Dialog.showConfirmation(
 contents.head,
 "Your DNSDB API key MUST be in a plain text file called .dnsdb-apikey.txt in the
default home directory.\n\nWE CAN'T FIND IT.\n\nDid you forget to create it?\n\nOr

	 61	
perhaps you misnamed it by forgetting the leading dot in the file name? \n\nMaybe it's
in the wrong directory?\n\nAnyhow, without it, WE CANNOT CONTINUE.\n\nHit either button
to exit. Get the file in the right spot, then try again.",
 optionType = Dialog.Options.OkCancel,
 title = "ERROR!"
)
 if (res == Dialog.Result.Ok)
 sys.exit(0)
 else
 sys.exit(0)
} // end of UIerror2

// -----------------

class UIerror3 extends MainFrame {
 contents = new BoxPanel(Orientation.Vertical) {
 contents += new Label {
 text = " "
 }
 }
 val res = Dialog.showConfirmation(
 contents.head,
 "Java has two cryptographic modes: the default (limited strength) mode, and
enhanced\n(unlimited strength) mode. This program intentionally requires unlimited
strength\nmode.\n\nYOU DO NOT CURRENTLY HAVE JAVA UNLIMITED STRENGTH CRYPTOGRAPHY
ENABLED.\n\nTo correct this, see\n\n \'Java Cryptography Extension (JCE) Unlimited
Strength Jurisdiction Policy Files 8 Download,\'\n
http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-
2133166.html\n\nOnce you have downloaded and unzipped the unlimited strength
cryptographic policy files,\ncopy them into your JRE\'s lib/security directory, replacing
the files of the same name that\nare currently there. NOTE: You will only need to do this
ONE TIME for any given JRE installation.\n\nThe exact location of your JRE lib/security
directory may vary, and if you have multiple copies\nof Java installed you'll need to
make sure you enable strong crypto on the RIGHT copy of Java,\nbut on a typical Mac,
see\n\n
/Library/Java/JavaVirtualMachines/jdk1.8.0_121.jdk/Contents/Home/jre/lib/security\n\nOn a
typical Windows 10 PC, see\n\n C:\\Program Files
(x86)\\Java\\jre1.8.0_121\\lib\\security\n\nUntil you successfully enable strong
cryptography for Java, WE CANNOT CONTINUE.\n\nHit either button to exit. Get the strong
crypto policy files installed, then try again.",
 optionType = Dialog.Options.OkCancel,
 title = "ERROR!"
)
 if (res == Dialog.Result.Ok)
 sys.exit(0)
 else
 sys.exit(0)
} // end of UIerror2

// -----------------

object SampleScala {

 var apiKeyFileStatus = "APIFileIsOK"

 def main(args: Array[String]) = {

 // CHECK SANITY OF CONFIGURATION, FIRST...

 // Does the API Key File exist, and is it of at least the right size?

 val homeDir0 = System.getProperty("user.home")
 val apiKey0 = ".dnsdb-apikey.txt"

	 62	
 val apiPath0 = homeDir0 + "/" + apiKey0

 val f = new File(apiPath0)
 val filename0 = apiPath0
 var myLine0 = ""

 if (f.exists()) {
 for (line0 <- Source.fromFile(filename0).getLines()) {
 myLine0 = line0
 myLine0 = myLine0.replaceAll("(\\r|\\n)", "")
 }
 } else {
 // println("API Key File doesn't exist at .dnsdb-apikey.txt in default home
directory")
 val uiError2 = new UIerror2
 uiError2.visible = true
 }

 val fileContentsLength = myLine0.length()

 if (fileContentsLength == 64) {
 // file contents length is correct
 } else {
 // println("Wrong size : " + fileContentsLength)
 val uiError = new UIerror
 uiError.visible = true
 }

 // now check for the existence of strong crypto policy files
 val unlimited = Cipher.getMaxAllowedKeyLength("RC5")
 if (unlimited <= 256) {
 val uiError3 = new UIerror3
 uiError3.visible = true
 }

 // all's okay, proceed as normally

 val ui = new UI
 ui.location = new Point(50,50)
 ui.pack()
 ui.visible = true

 while (System.in.read() != -1) {}
 }

}

	

	

	 63	

Appendix	III.	SampleScala/project/assembly.sbt

addSbtPlugin("com.eed3si9n" % "sbt-assembly" % "0.14.4")

Appendix	IV.	SampleScala/project/plugins.sbt	

addSbtPlugin("com.typesafe.sbt" % "sbt-native-packager" % "1.2.0-M8")

	 	

	 64	

Appendix	V.	Licenses	

Scala

Scala is licensed under the BSD 3-Clause License.

Scala License

Copyright (c) 2002-2017 EPFL
Copyright (c) 2011-2017 Lightbend, Inc.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

Neither the name of the EPFL nor the names of its contributors may be used to endorse
or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS, "AS IS‚" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.

Scala-Swing

Scala-Swing is also licensed under the BSD 3-Clause License.

	

	 65	

Appendix	VI.	check.java	source	file	

// portions from http://stackoverflow.com/questions/7953567/checking-if-unlimited-
cryptography-is-available

import javax.crypto.Cipher;
import java.io.*;
import javax.swing.filechooser.*;
import javax.swing.JFileChooser;
import javax.swing.filechooser.FileSystemView;
import java.nio.charset.StandardCharsets;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.util.List;

public class check {
 public static void main(String args[]) throws Exception {
 System.out.println("Sanity checking DNSDB API Environment...");
 System.out.println("--");
 System.out.println(" ");
 System.out.println("What operating system?...");
 String osName = System.getProperty("os.name");
 String osVersion = System.getProperty("os.version");
 System.out.println(" " + osName + " " + osVersion);
 System.out.println("What JRE?...");
 String javaVersion = System.getProperty("java.version");
 System.out.println(" "+javaVersion);
 System.out.println("Installed where?...");
 String javaHome = System.getProperty("java.home");
 System.out.println(" "+javaHome);
 System.out.println("Unlimited crypto policy files enabled?...");
 boolean unlimited =
 Cipher.getMaxAllowedKeyLength("RC5") >= 256;
 System.out.println(" "+unlimited);
 System.out.println("Is there a .dnsdb-apikey.txt file in your home directory?...");
 JFileChooser chooser = new JFileChooser();
 FileSystemView view = chooser.getFileSystemView();
 String homeDir = view.getHomeDirectory().toString();
 System.out.println(" Home dir: " + homeDir);
 String checkFile = homeDir + "/.dnsdb-apikey.txt";
 File f = new File(checkFile);
 if (f.exists()){
 System.out.println(" Found: " + checkFile);
 System.out.println(" Contents:");
 String apiKeyFile = new String(Files.readAllBytes(Paths.get(checkFile)));
 apiKeyFile = apiKeyFile.replaceAll("(\\r|\\n)", "");
 System.out.println(" "+apiKeyFile);
 int fileContentsLength = apiKeyFile.length();
 System.out.println(" Size=64 characters (disregarding EOL chars)?...");
 if (fileContentsLength == 64) {
 System.out.println(" true");
 }
 else {
 System.out.println(" FALSE. Length ="+fileContentsLength);
 }
 }
 else {
 System.out.println(checkFile + " NOT FOUND");
 }
 }
}

