
In our earlier article (“TOWINAP, The Only Way Is Nuke and Pave“), we mentioned that sometimes you might be best off replacing an older-model computer once it becomes infected. When doing so, you could buy a new system pre-assembled, or you could try assembling one of your own. Depending on your level of technical skill and persistence, assembling your own Windows PC can be:
or
On balance, most people are probably better off just buying a pre-assembled system rather than trying to assemble one. That may sound radical, but remember, if you’re a member of the “Mac faith,” all Macs are purchased as pre-assembled systems. We know, we know, Macs (and Mac people) are “different.” And MS Windows PC people have always had a pioneering “do-it-yourself” tradition. Still, most people ARE going to be best off just buying a new pre-assembled system. The best way to explain why we feel this way is by walking you through the process of assembling your own PC. By the time we’re done, we think you’ll see why the process is more complex than you might initially think. You may even come to agree with us that buying a pre-built system is a better idea than trying to assemble one yourself. (For one argument in the other direction, see “14 Reasons Why You Should Build A PC,” https://techguided.com/14-reasons-why-you-should-build-a-pc/)
Some of you may want to build the “fastest gaming PC you can put together.” If money’s no object, great! If you did want to spend the money you’d saved up for a down payment on a new car, it’s easy to drop $3K or more on a gaming computer, see for example https://www.dell.com/en-us/shop/desktop-computers/alienware-aurora-r16-gaming-desktop/spd/alienware-aurora-r16-desktop/useahbtsr16igpnt
Others of us may have more-limited budgets, and may need to calibrate our expectations to our bank accounts. We’re going to assume that you’ll want to build a computer that works “well enough” for video gaming, even if it isn’t the fastest system in the neighborhood, and the computer should also be usable for miscellaneous Internet purposes such as email, social media, online shopping, etc. We’ll assume a realistic budget is around $1,500. (It has always amazed us how enduring the $1,500-for-a-new-system number has been over the years — it seems like a new PC “always” ends up costing around $1,500, even if you do get a lot more for that amount than you used to).
The good news about building your own PC is that you can pick whatever parts you like (and can afford). The bad news about building your own PC is that you need to pick the specific parts you’re going to use, and the list of parts you’re going to need is actually fairly long:
Each of these system components requires research and ultimately, a decision. If you happen to make a poor decision, that can lead to compatibility problems, instability, or other issues. Welcome to being in charge of your own “computer destiny!”
For a new system, the first decision that we face is the choice of Central Processing Unit (CPU): do we want an Intel or an AMD (Advanced Micro Devices) CPU? You can choose either, but once you’ve selected a processor family, that constrains the set of motherboards you can potentially pick (since the CPU and the motherboard MUST use the same CPU socket). So which CPU vendor should you pick?
It could be as simple as saying, “Well, we’re from the Pacific Northwest and Intel’s an Oregon company (see https://www.intel.com/content/www/us/en/corporate-responsibility/intel-in-oregon.html). We don’t have anything against AMD, but as Oregonians, we want to support local companies.” Most folks, however, don’t live in the Pacific Northwest. In that case, price/performance ratios often end up driving the choice. The general recommendation these days seems to be that “Intel currently offers the best bang for the buck…” Some examples of CPU comparison articles you can review include the following (ordered by site name):
For the purposes of this article, we’ll assume that for whatever reason, you’ve decided to go with an Intel CPU for your build.
Deciding to use an Intel processor is just the first of many decisions you’ll need to make. For example, you still need to select a specific CPU. In the case of Intel processors, winnowing our choices means deciding if we want a Core i9, Core i7, Core i5, or Core i3. We’ll assume the Core i3 — a rock bottom budget option — is not very attractive for a new build. So how to decide between the other possibilities? The “higher numbered” CPU tiers generally offer more cores, more cache, and higher operating frequencies, among other things. Those features translate into faster performance, but that performance comes at a higher cost.
There are many different processors you could choose, but let’s just consider a representative assortment of some CPU options. Let’s start with an i5-12600K. This is a processor from the previous generation of processors (Intel’s “12th generation”), but is still a very capable CPU. It’s currently available for under $200. Since we love a bargain, and we’ve still got a lot of other bits and pieces to buy and a limited budget target, let’s assume we’re going to use this one for our build:
I5-12600K, 10 cores, 20MB cache, 4.9GHz, 12th gen, Intel UHD Graphics 770: $194 <- our pick
What if we wanted something faster? Well, for “just” another $123 dollars (63.4% more!), we could get a faster processor with 4 more cores and 4 more MB of cache via the current (“13th”) generation line of Core i5 processors:
I5-13600K, 14 cores, 24MB cache, 5.1GHz, 13th gen, Intel UHD Graphics 770: $317
The next logical step up (“just” another $88!) would give us still more cores and still more cache:
I7-13700K, 16 cores, 30MB cache, 5.4GHz, 13th gen, Intel UHD Graphics 770: $405
But heck, if you’re already going to spend over $400, why not “splurge” a little and spend $163 more to get a top end processor with tons of cores and cache?
I9-13900K, 24 cores, 36MB cache, 5.4GHz, 13th gen, Intel UHD Graphics 770: $568
There will often be “just a little increase” going from one performance tier to the next, BUT if you add all those “little” increases up, the TOTAL impact on your system’s price can be substantial. On the other hand, if performance does matter, you don’t want to “cheap out” and end up disappointed by what you’ve just spent a lot of time, money, and effort to build. This decision is ultimately yours — and this is just the first of many decision points you’ll encounter as you select your system’s components. We suggest you stay practical and resist “incrementalist budgetary disasters.”
You should also recognize that performance is often ultimately a matter of BALANCE: if you “splurge” and break the bank buying a top-of-the-line CPU, maybe you will then only be able to afford 8MB of memory, slow spinning disk, and no GPU. That would result in a system that actually performs far WORSE than a well-balanced system with a middle of the road CPU, more memory, SSD storage, and a middle-of-the-road GPU.
Oh, and do NOT attempt to save a few bucks by buying “used”/”open box”/”refurbished” components. These may have been damaged or otherwise “returned for a reason.”
A prime example of cost differentials can be seen in the various versions of specific Intel processors that are available on the market. E.G., two or three options with the same base model number, just different suffix codes. Checking Amazon, we see:
So, what accounts for that dramatic difference in pricing? And what do all suffixes at the end of the CPU model numbers actually mean? Some processors model numbers that look ALMOST the same seem to be a lot less (or a lot MORE!) expensive than others. Do those suffixes really matter, or can I save some money by substituting one model for another?”
The most common suffixes you’ll run into are:
<no suffix> The standard processor (WITH internal graphics; NOT overclockable)
K With processor graphics, overclocking permitted (overclocking is strictly optional)
F NO processor graphics; NOT overclockable
KF NO processor graphics; overclocking permitted (overclocking is strictly optional)
We recommend that you avoid buying the “F” or “KF” versions of Intel CPUs. These versions do not have on-processor graphics support. If you ever have any problems with your external graphics processing unit (GPU), and you’ve purchased an F or KF CPU, you’ve shot yourself in the foot — you’ll really miss having the on-processor graphics available as a fallback.
The other suffix to pay attention to is the “K” suffix. If the suffix includes “K” you can overclock. Overclocking can potentially give you extra performance. That said, overclocking may not always work: depending on the interplay of your components, thermal regulation, and a host of other factors, overclocking may work just fine, or it may make your system unstable. The extra voltage (and associated heat) may also shorten component lifetimes or void your warranty. See the discussion of overclocking from Intel itself at https://www.intel.com/content/www/us/en/gaming/resources/5-reasons-to-overclock-your-next-pc.html
If overclocking is definitely part of your plans, be sure to look for that “K” suffix. We’ll also add that a “K” processor will work just fine for virtually all regular (non-overclocked) CPU requirements, too, so you can buy a “K” suffix processor and choose not to overclock.
Digesting all of the above, you now know to:
The Intel 12th and 13th generation Core CPU families all rely on the LGA1700 socket (we’re not going to consider earlier generation CPU families, even though they remain usable if you’ve already got one in-hand). Let’s talk a little about that LGA1700 socket next.
If you don’t routinely ponder motherboards, let’s just say that the LGA1700 socket is quite the engineering marvel. It literally packs 1700 pins into a small footprint, a very impressive engineering accomplishment, but one which means that the socket is quite fragile. NEVER let ANYTHING touch the socket except the CPU, and never let ANYTHING touch the pads on the CPU except the pins in the socket.
LGA1700 motherboards ship with a plastic protective socket cover that you’ll remove just before mounting the CPU. Do NOT discard that little plastic cover! If you ever need to return the board for warranty work, most sites will NOT accept the board if it’s been shipped without its protective socket cover installed. If you do ever need to reinstall that cover, consult your motherboard’s manual for help. MIS-installing the cover (for example, attempting to install it UNDER the bracket instead of ON TOP of the bracket) is an easy way to destroy an expensive motherboard’s socket.
IMPORTANT: Speaking of accidentally destroying motherboards, ALWAYS follow manufacturer recommendations when building your computer, including following any recommendations for controlling electrostatic discharges. If you fail to correctly manage static during your build, one stray spark may zap $100’s of dollars of CPU, motherboard, RAM, NVMe, or other components.
An LGA1700 socket (with cover removed) looks like:
The corresponding pads on the bottom of an Intel CPU that uses the LGA1700 socket look like:
IMPORTANT: When installing the CPU in the socket, you must align the tiny triangle that in one corner of the CPU (barely visible in the bottom right corner of Image 2) with the triangle in the corner of the socket (somewhat hard to see in the bottom left corner of the socket in Image 1).
IMPORTANT: When it is time to install the CPU cooler, do not forget to use the thermal paste or thermal tape. We’ll talk about the thermal paste (or double sided thermal tape) and the CPU cooler you’ll need later in this article.
If you think that selecting a CPU is a complex topic and one prone to generating passionate opinions, opinions about motherboards can be as bad or worse. Some normal “motherboard bikeshed” topics include:
Let’s dig a little further into motherboards, beginning with the various tiers the vendors have defined for their motherboard product lines.
Most motherboard vendors offer multiple tiers of motherboards. The popular motherboard manufacturer MSI, for example, has four tiers of motherboards. That’s the first thing to understand. Three of these tiers are targeted specifically at gamers:
From the naming, it’s hard to know which of those is “high end” and which of those is “entry level?” (Are we “enthusiasts?” Do we need an “arsenal?” Surely “performance” is always good!”)
Fortunately, pricing signals can begin to help clear up the relative positioning of the motherboards. You can also try checking out the comparison of features and capabilities available on each vendor’s site for precise details.
The top end of MSI motherboards is the MSI MEG line, exemplified by the MSI MEG Z790 “Godlike” motherboard. This is MSI’s flagship $1,200 E-ATX-sized (bigger-than-ATX-size) motherboard. It’s very well designed and built, and includes deluxe features such as a 4.5″ Color LCD remote display, and SEVEN M.2 sockets for NVMe storage. It’s engineered to facilitate overclocking, with abundant power, enhanced cooling and good instrumentation for temperature monitoring, etc. Oddly enough, this motherboard doesn’t support on-CPU graphics (see for example the “7x m.2 slots, BUT It DOESN’T have WHAT!!!!???”, a video review by “Tech Notice” at https://www.youtube.com/watch?v=G3fgj6YKWIo)
What then, comparatively, about the MSI MPG line? The MSI site says that “The MPG series brings out fashionable products by showing extremely unique styles and expressing a conceited attitude towards the challenge of the gaming world. With extraordinary performance and style, the MPG series defines the future of gaming fashion.” (Hmm. We’re planning on putting our board into a solid-sided case, so what the board looks like doesn’t really matter all that much to us!) Anyhow, an example of an MSI MPG motherboard is the MSI MPG Z790 “Carbon” WiFi motherboard. It sells for around $400, one third the price of the MEG “Godlike” board. The “Carbon” board is ATX size, and for comparison to the MEG “Godlike” board, it has “just” five M.2 sockets, more than plenty for most situations. Power, cooling, audio, etc. all also look more than adequate to me. If you’re interested in a detailed positive review, check out https://realhardwarereviews.com/msi-mpg-z790-carbon-wifi-review/.
Going further down-market, we come to the MSI MAG motherboard line. A typical example here is the MSI MAG Z790 “Tomahawk” WiFi motherboard. This very popular ATX size motherboard sells for about $260. Again, while not as deluxe as some of the others, for most applications the Tomahawk will be just fine. A sample review: https://www.pcgamer.com/msi-mag-z790-tomahawk-wifi/.
Finally, let’s consider the MSI PRO motherboards. A leading example is the MSI PRO Z790-A WiFi motherboard. The “PRO” prefix indicates that this is part of their “Professional” motherboard line. It normally sells for around $240. A nice way to see how it stacks up to the $20-more-expensive Tomahawk: https://versus.com/en/msi-mag-z790-tomahawk-wifi-vs-msi-pro-z790-p-wifi (or check out the review at https://reatbyte.com/2023/03/28/msi-pro-z790-a-wifi-review-affordable-but-high-end/).
Vendors other than MSI similarly offer multiple tiers of motherboards. For example:
If we were the product managers responsible for managing motherboards for these companies, we’d likely attempt to reduce the number of SKUs and more clearly explain the tiers we retained so as to avoid befuddling potential purchasers!
Just as CPU model number suffixes convey information about the processor’s features (e.g., does a CPU have integrated video?) and allowed usage (e.g., is a CPU unlocked and able to be overclocked?) motherboard model numbers also convey information about a board’s targeted use and capabilities – they’re not just “randomly assigned strings.”
Motherboard model numbers often include both prefixes (letters at the beginning of the model number) and suffixes (letters at the end of the model numbers).
Model Number Prefixes (https://www.intel.com/content/www/us/en/gaming/resources/how-to-choose-a-motherboard.html):
Z Supports overclocking (assumes use of an unlocked/overclockable Intel “K” series CPU) and up to 6 USB 3.1 ports.
H Non-overclockable with support for up to four USB 3.1 ports.
B Non-overclockable with just USB 3.0 support.
Our recommendations ? Always buy a “Z” prefix motherboard. The difference in price is usually not that much.
First Number of the Three Digit Numerical Model Number (E.G., the Intel Platform Controller Hub (PCH) Version):
For Intel Gen 12/13 motherboards, this number will be either 7 or 6. There are relatively few practical differences between the two.
An easy rule (assuming no meaningful difference in price): buy a 700 series board. If there IS a difference in price, buy whichever is less expensive.
Important note: If you DO buy a less-expensive 600 series board AND want to use it with a 13th gen processor, that’s fine, BUT you will need to flash the BIOS (see https://www.intel.com/content/www/us/en/support/articles/000092294/processors.html).
This is relatively easy to do IF you’ve got a thumb drive and your motherboard supports a “push the button to flash the BIOS” feature. If your motherboard does NOT have the “push the button to flash the BIOS” feature, or you’re NOT comfortable doing that AND you have a 13th generation Intel CPU, just buy a 700 series motherboard instead.
Second and Third Numbers of the Three Digit Numerical Model Number:
The second and third digits in the model number normally “goes with” the alphabetic prefix, so, for example, if you see a “Z” prefix on a model number you’ll normally see “90” for the 2nd and 3rd digits. We suggest using either a Z790 or Z690 motherboard for most builds, even if you aren’t overclocking. If you’re just curious about alternatives (such as H670 or B660 motherboards), see:
Model Number Suffix:
Usage of the model number suffix may vary from vendor to vendor. Some vendors, such as Gigabyte, may use it to denote that a board has a particular footprint (typically a suffix of “I” = mini-ITX, “M” = micro-ATX, “E” = eATX).
In the case of MSI and ASUS, the suffix often gets used as a final indication of board capabilities. See for example
Rather than getting tied up in an endless hairball of an argument over the merits of ASRock vs ASUS vs Gigabyte vs MSI vs … we’re just going to “cut to the chase” and assume we’ll be using an MSI PRO Z690-A DDR4 motherboard (see https://www.msi.com/Motherboard/PRO-Z690-A-DDR4/), about $190 from Amazon or BestBuy.
Note that many motherboards have confusingly similar names, so be sure you get the right name if you’re “playing along from home.” This model:
Things I like about this board:
Speaking of documentation, one of the things we’d encourage you to do is to download a copy of the motherboard’s manual prior to purchasing one. After doing so, look it over – can you decipher it easily, or does it feel like you’re looking at a Norse rune?
We downloaded https://download.msi.com/archive/mnu_exe/mb/PROZ690-AWIFIDDR4_PROZ690-ADDR4100x150.pdf (and also the BIOS user’s guide at https://download.msi.com/archive/mnu_exe/mb/Intel600BIOS.pdf). I found the MSI manuals to be very well written, and the map of the motherboard and the diagram of the front panel connectors to be very clear. For example:
Other manuals may be equally as good, but you may also run into some that may be quite difficult to puzzle through.
Once you’ve tentatively settled on a motherboard, it’s imperative that you get in the habit of checking everything for compatibility. For example, is the CPU that we selected in the previous section compatible with the motherboard we picked?
Let’s check at https://www.msi.com/Motherboard/PRO-Z690-A-DDR4/support#cpu
Yep! Looks good. Now let’s now move on to RAM – first of all, how much RAM do I “need?”
People talk about 16GB of RAM as being adequate, but more memory always seems to come in handy if you can afford it. You’re also better off getting all the RAM you may foreseeably need at the same time – it can be a pain to try to find matching RAM later for an urgent expansion project (I’m told that this is like trying to match die lots for a knitting project when you failed to purchase the right number of skeins up front – you’re often going to end up frustrated and unable to find what you need when you need it).
When you do start shopping for RAM, you may notice a bewildering number of options:
If you’re not a memory geek, some of the above information may just “make things worse.” If you do want to dig in, I urge you to check out the excellent posting “RAM explained: Why two modules are better than four / single vs. dual-rank / stability testing,” see https://forum-en.msi.com/index.php?threads/ram-explained-why-two-modules-are-better-than-four-single-vs-dual-rank-stability-testing.363139/
What ultimately matters is compatibility. Is the memory part number one that the vendors say will work? When checking, you may encounter an interesting phenomenon:
For example, perhaps you were browsing memory modules on Amazon and noticed https://www.amazon.com/dp/B08N688HCH (“Patriot Viper Steel RGB DDR4 64GB (2 x 32GB) 3600MHz Kit – PVSR464G360C0K”) for $115. That’s an attractive price for 64GB of memory, IF the memory will work on our motherboard. Checking
https://viper.patriotmemory.com/products/viper-steel-rgb-ddr4-performance-ram and selecting “DDR4 QVL LIST FOR MSI” we see:
That looks good. But now, since all security guys are paranoid by profession, what do we see if we ALSO check the motherboard site?
Checking https://www.msi.com/Motherboard/PRO-Z690-A-DDR4/support#mem (selecting “Memory by 12th Gen K series”), the only Patriot memory modules they list as supported for 12th Gen K series CPUs are:
Hmm. That’s unfortunate.
Despite this memory kit NOT being listed on the MSI site, we bought it anyway and it currently appears to work just fine (as the Patriot compatibility chart indicated it should). If you worry about such things, though, you may want to look for memory that’s shown as compatible on BOTH the motherboard vendor’s site AND the memory vendor’s site.
When installing the RAM, be sure to use appropriate protection against electrostatic discharge, avoid touching the gold contacts on the bottom of the RAM modules, and be sure the clips at the end of the RAM slots are seated when the RAM’s fully in the DIMM slot. You should NOT need to use much pressure to seat the modules or secure the clips.
It is important that you insert the modules in the correct slots and correctly oriented — the slots you should use may vary from board to board, and may NOT be the slots you might assume. See your motherboard’s manual for guidance. For our motherboard:
To see where those DIMM slots are relative to the processor socket, look at the map of the motherboard:
NVMe (solid state) storage is increasingly popular, in part because prices have quickly dropped, and it tends to be fast and easy to install. A 1TB Samsung 990 PRO NVMe stick runs around $80-$90 from Amazon (as always, check and confirm that the NVMe memory you’ve got in mind is compatible). For our motherboard, that means checking
https://www.msi.com/Motherboard/PRO-Z690-A-DDR4/support#hdd
As another example of how nice this particular motherboard documentation is, note the following helpful illustration for installing an NVMe stick.
If you’re using a SATA solid state drive (or a SATA spinning drive), we’ll install that later.
The case is one of the critical (but often-overlooked) components of a new system. It is in many ways the “backbone” of your build, holding your motherboard, power supply, and disks. It protects your components, and ensures they stay cool.
At the most fundamental level, your case needs to be able to accommodate the form factor of your motherboard: if your motherboard’s ATX-size, as ours is, be sure to make sure the case is able to hold an ATX-size motherboard (some compact cases may only be able to hold micro-ATX or mini ITX motherboards).
Beyond basic sizing, the modern trend is to proudly showcase one’s system by using a case with a transparent side. We tend to be a bit “old school,” preferring the style of a plain black audio power amplifier with nothing on the case except a power button, sort of like the classic (83 pound, $8,000!) Parasound JC 1+ audiophile power amplifier (see https://parasound.com/products.php). Conveniently, plain black computer cases are still available and even relatively inexpensive.
The basic example of a case of this sort would be a Fractal Design Focus 2 Black ATX/mATX/Mini ITX Solid Mid Tower Computer Case, around $70, see
At that price point, you get a minimalistic black metal box with two full-size fans, good airflow courtesy of numerous perforated metal panels, an illuminated power switch, filters, and some miscellaneous hardware. If that case isn’t available, one could also try:
Regardless of the case you select, some things to note:
If you or your family/friends are noise sensitive, keep this potential noise in mind while selecting your cooling system and case. Selection of an AIO (All-in-One) liquid cooler and an acoustically dampened case may really help preserve household harmony.
Also be alert to the possibility that noise you hear may be caused by a cable or something else (like a cable tie) contacting a spinning fan.
Like the case, the power supply is another mundane-yet-crucial component. If you’re not familiar with computer power supplies, you may assume that all ATX power supplies are equal. In fact, power supplies are not all the same. If you buy a poor quality power supply, it might fail and damage your system or even cause a fire. If you buy a power supply that’s insufficiently powerful, your system may be unstable.
Modularity: For example, power supplies can be modular or non-modular. Modular supplies let us install just the cables we actually need, rather than having to juggle a complete pre-wired set of them. Modular power supplies tend to make for a cleaner build.
Capacity: A second consideration is the amount of power the supply can deliver. At the bottom of the spectrum, you could buy a basic 430 watt power supply, but that’s underpowered for virtually all modern systems. At the top of the spectrum, you could get a 1600 watt power supply, but that’s often more than necessary. So how to figure the right size for your needs?
https://www.newegg.com/tools/power-supply-calculator/ makes it easy to get an estimate by plugging in the components we’re using. When we ran it, we needed ~700 watts. To give ourselves a margin of error, we chose an 850 watt unit.
Efficiency: Power supplies are not perfectly efficient — some power always gets wasted as heat. Depending on how the power supply is engineered and constructed, loss can be minimized. This translates to lower electricity consumption and less waste heat. The efficiency levels you may see (per https://en.wikipedia.org/wiki/80_Plus) look like the following:
Zero-RPM: While some power supplies have a fan that runs continuously as long as the power supply’s on, high efficiency power supplies may be able to safely run without using the fan when handling modest loads.
RGB or plain? If you like lights, you can get power supplies with RGB lights. Prefer an unlit power supply? They’re available too.
Cost: An 850 watt 80 Plus Gold (OR Platinum) modular power supply usually runs around $135, including cables. We’re going to use an 850 watt 80 PLUS Platinum-certified modular power supply, the Corsair HX850, see https://www.corsair.com/us/en/p/psu/cp-9020138-na/hx-series-hx850-850-watt-80-plus-platinum-certified-fully-modular-psu-cp-9020138-na
Connecting the motherboard to the power supply: This involves attaching one 24 pin connector and two eight pin connectors. We’ll also need to eventually connect the power supply to the GPU (and any non-NVMe drives), but we haven’t installed them in the case yet. Be sure to use the cables that came with the power supply (not other cables you may have just laying around). Select the right cable and the right power supply socket (they’re both labeled). Be sure to install the cables with the connectors correctly oriented. See https://www.technewstoday.com/power-supply-connectors/
Since we were careful to select a CPU that includes an on-chip GPU, we could (theoretically) simply use the Intel UHD 770 on-chip GPU instead of buying and installing a separate dedicated GPU card. In practice, that generally doesn’t work very well when it comes to handling modern video games at reasonable resolutions and frame rates (see for example https://artofpc.com/review/intel-uhd-770/). For most gaming at reasonable resolutions and frame rates, we must use a dedicated discrete (“external”) GPU card.
During 2021, many cryptocurrencies boomed (see https://www.weforum.org/agenda/2022/01/top-cryptocurrencies-performance-2021/). As a result, GPUs became difficult to find, and when cards were available, they were expensive (scalpers would buy all the cards they could find and then resell them at inflated prices on the secondary market). The GPU market has improved since then for a variety of reasons:
The net result is that prices have stabilized and supplies have largely returned to normal, making it once again feasible to buy a GPU for a gaming desktop. But which one?
GPU Vendors: There are three major GPU manufacturers: NVIDIA (GeForce RTX), AMD (Radeon), and Intel (https://www.digitaltrends.com/computing/intel-arc-graphics-cards-silently-excellent/). NVIDIA has 84% of the market (see https://wccftech.com/gpu-shipments-continued-to-decline-in-q1-2023-nvidia-at-84-amd-at-12-intel-at-4-market-share/). That extreme level of market dominance means games and other products will primarily support NVIDIA GPUs, with any other GPU handled as an afterthought or compatibility layer (if at all). Therefore, we, too, will follow the “CUDA road” and go with NVIDIA.
Which Model? It’s easy to spend thousands on a GPU card. In our case, we’d like to keep the cost of our GPU to no more than the cost of our CPU+motherboard, or $384. At that price, our options for NVIDIA cards are fairly limited. We’re going to use the ZOTAC Gaming GeForce RTX 3060 Ti LHR with 8GB of GDDR6, ~$350. See https://www.amazon.com/ZOTAC-Graphics-IceStorm-Advanced-ZT-A30610H-10MLHR/dp/B097YW4FW9/ Specs for that card can be seen at
https://www.zotac.com/us/product/graphics_card/zotac-gaming-geforce-rtx-3060-ti-twin-edge#spec
Willing to spend more? Maybe consider an Nvidia RTX 4070, about $639, see the review at “RTX 4070 review: An ideal GPU for anyone who skipped the graphics card shortage,” https://arstechnica.com/gadgets/2023/04/rtx-4070-review-an-ideal-gpu-for-anyone-who-skipped-the-graphics-card-shortage/ and “Nvidia GeForce RTX 4070 Review: Mainstream Ada Arrives,” https://www.tomshardware.com/reviews/nvidia-geforce-rtx-4070-review
Whichever GPU you end up getting, after ensuring the power supply is unplugged, mount the GPU card in the motherboard’s steel-reinforced PCIe slot:
With the GPU installed, let’s return our focus to the CPU. The CPU will produce enough heat that it requires a CPU cooler. In the old days, CPUs could be adequately cooled with just a small heatsink and fan, but modern CPUs run much hotter. Modern CPUs require either liquid cooling or a large air-cooled heatsink.
You need to ensure that whatever CPU cooling solution you select can handle the heat produced by your CPU. The small “cupcake sized” extruded aluminum coolers (good enough for the 65 watts or less that you might see from an entry-level processor) will NOT adequately protect faster processors.
We selected a DeepCool GAMMAXX AG620 Dual-Tower CPU Cooler with two 120mm Fan and Six Copper Heat Pipes, about $50. It’s spec’d as being good for up to 277 watts. A review of this unit is available at https://www.tomshardware.com/reviews/deepcool-ag620-air-cooler The manual for the AG620 is available at https://www.deepcool.com/download/pdf/AG620.pdf
This cooler is a large and relatively unwieldy unit with two full-size attached fans. Your computer’s case should have an access area under the middle of the motherboard – it’s there to help you mount the CPU cooler’s bottom bracket.
To mount the CPU cooler, begin by ensuring the power supply is unplugged. Then:
At the same time, be careful not to put on too much thermal paste either. Intel has a nice guide at https://www.intel.com/content/www/us/en/gaming/resources/how-to-apply-thermal-paste.html
Note that for whatever reason, thermal paste appears to be a favorite last second way of gouging tired system builders, either being out-and-out overpriced or being really cheap (except for an exorbitant “shipping and handling” fee they hope you’ll overlook). Look carefully at your invoice before you finalize any online orders!
Rather have a liquid cooler? Totally get that. Just be prepared to spend two to three times what that air-cooled unit is running.
We’re getting close to being done! There are several more steps to perform which may be optional depending on your build.
Connect Any SATA or DVD Optical Drives: We connected an NVME drive previously in this build, but we may still need to connect any SATA SSD drives, SATA spinning disks, or DVD optical drives. Mount the drive or drives to your computer’s case in hard drive cages. You can also buy an add-on hard drive cage for your case if it doesn’t come equipped with one by default).
Each SSD or spinning drive will need both a SATA cable (marked as such on the cable connector) and a power cable. Connect the SATA cable to the appropriate connector on the motherboard, then connect the power cable to the modular power supply.
Perform Any Cable Management and General Housekeeping: During a normal build, cables often end up draped everywhere. You want to tidy things up and tie those cables in place to the case. Do so carefully so you don’t accidentally crimp any cables or knock the power-on connectors (or other connectors) off their pins. There should also be no indication of loose hardware (such as dropped screws) rattling around in the system.
Close Up Shop: Now is the first time you can fully close up your case, and put all panels on at the same time. Does the case close up easily? Are there any cables or pieces of hardware which rest up against a panel? Now is the time to go back and review everything installed correctly and to ensure it all fits properly. From this point on, we are connecting peripherals and configuring the software for this build.
Connect Your Monitor to Your GPU: Given that for this build we did purchase a new GPU, plug in a monitor into a port on your new graphics card and not to the motherboard’s video port! You do want to use that expensive GPU you bought, right?
You may have your choice of how to connect: such as DisplayPort, HDMI, or even USB-C. Using the Display Port will normally result in the best quality image, so that is our recommendation.
Time for a new monitor? If you haven’t looked recently, at the time this was written, you can get a new 22-inch ViewSonic VX2267-MHD 1080p Gaming Monitor with 1920×1080 resolution, 75Hz refresh rate and 1ms response time for under $110 from Amazon. That unit supports DisplayPort and HDMI connections, and even includes a VGA port for use with legacy devices.
Connect Everything Else: Connect a USB keyboard and mouse. It may seem silly to write this, but it is surprising how often people forget to plug in their mouse. Need a new one? Basic wired keyboards are under $20, and a basic wired mouse is about $7.
If you’re not just using headphones, you’ll want to connect your speakers or audio system, too. Motherboard will have dedicated sound input and output jacks. They are color-coded to help ensure plugs are connected correctly.
Connect to Networking: Our motherboard did not come with WiFi networking so we are connecting it to our home router with an ethernet cable. If network speed and performance matter to you, we also recommend you do the same. If your motherboard does come with WiFi networking, then that is also an option for you.
Regardless of how you connect, you may be required to have a networking connection to validate your copy of Windows and install all needed security updates.
Connect Your Computer to Your Uninterruptible Power Supply (UPS): You are using a UPS and not just a surge protector, right? A UPS maintains power to electronics in the case of our power failure. Think of it as a battery backup for your machine. The UPS gives you time to save what you were working on and shutdown the machine gracefully in the event you lose power. Most UPSs can provide you anywhere from several minutes to an hour or more of power before their internal battery drains.
Now that the hardware is all put together, let’s get some software installed and running.
First Boot: This is it, the moment of truth about this build. With the power supply switch set to “|,” press and release the power switch on the computer’s case.
Your new computer should come to life! You should see some messages appear on your monitor from your machine’s BIOS. If it does, congratulations, you’ve done it! You’ve built functioning hardware! If, on the other hand, it doesn’t come up, we have some suggestions in the “Troubleshooting” section below.
Install Your Operating System: Every computer needs an operating system (OS). The OS is responsible for managing and controlling everything that the computer does. For this build we are going with Microsoft Windows 11, Home Edition. That’s typically about another $139 (and will be non-refundable once ordered). Be sure to apply all available updates, too.
Install Drivers for your GPU Card and Everything Else: Modern operating systems will come with a set of default drivers for most hardware you installed in the build. Your operating system may not have installed optimal GPU card drivers by default. If need be, see https://www.nvidia.com/download/index.aspx?lang=en-us
Install Relevant Security Software of Your Choice: One nice thing about building your own system is that it doesn’t come loaded down with hard-to-remove “bloatware,” but you still want to install appropriate security software of your choice. As a cybersecurity company, we do recommend you at least enable Windows Security and then research other options of your choice.
Ensure Your New System Is Backed Up: Once you start using your computer, you may forget to configure your system to backup your personal and important files. Much like with security software, there are a variety of choices to backup files either locally or to the cloud, as well as a default option provided by Microsoft called Windows Backup.
Overclocking is a way to get even more performance from the hardware you purchased. Remember, if you choose to overclock, you’re doing so ENTIRELY at your own risk. Here are some links to more information:
Looks like we just made our budget this time!
GPU: ZOTAC Gaming GeForce RTX 3060 Ti LHR 8GB $360
CPU: Intel I5-12600K $194
Motherboard: MSI PRO Z690-A DDR4 $190
OS: Windows 11 Home $139
Power Supply: Corsair HX850 $135
64GB RAM: Patriot Viper Steel RGB DDR4 3600MHz Kit $115
Monitor: 22″ Viewsonic VX2267-MHD gaming monitor $106
1TB NVMe: Samsung 990 PRO $80
Case: Fractal Design Focus 2 Black Solid Mid Tower $70
CPU Cooler: DeepCool GAMMAXX AG620 Dual-Tower $50
———
$1,439
There now! That wasn’t very complicated or expensive, was it? ☺
Building your own computer can be a rewarding experience, allowing you to “get your hands dirty” with all of the individual components. It allows you to determine for yourself which specific parts you want and how much you’re willing to spend. Although, as shown by the length of this article, it is a more involved experience rather than buying a pre-built machine.
We walked through many critical decisions on which parts to purchase, including: the CPU, the motherboard, the case, RAM, storage, and the GPU. We then reviewed some additional concerns such as the case and cooling solutions. Finally, we talked through how to put everything together and get it all up and running.
This computer is yours from beginning to end, enjoy it!
Don’t panic. Let’s walk through a few common troubleshooting scenarios. First, does the machine even turn on? Jump to the right section for some advice.
The System Just Won’t Do Anything When You Try To Turn It On
While your system may come together with no problems whatsoever, other times you may find yourself staring at a system that simply doesn’t do anything at all. That can be a real time-to-reach-for-the-antacids moment. Did you just put together a very expensive paperweight?
If none of the above helps, you may need to “go back inside” your new computer.
Be sure you’ve got your system unplugged if you need to do any internal investigating, and then be sure you remember to plug your computer back in when you’re done with any additional testing!
The System Will Turn On: It Runs But Is “Unstable”
If your new system starts and runs okay for a while, but then seems to become unstable and crashes or shuts down, that may also require some troubleshooting. Stability issues may be the result of non-current drivers, overly-aggressive overclocking, thermal issues, or more subtle problems.
Unless a vendor tells you otherwise, always run the most recently available drivers for your GPU and other system components.
Thermal issues may be the next easiest issue to identify and correct. Start by running a tool that exposes the temperature of various components. For example, you could try some of the software tools listed in this article: https://www.tomshardware.com/how-to/how-to-check-cpu-temp-temperature
If you are running hot, where are you running hot?
Sometimes there’s just a basic problem with a component. Searching online for specific components may yield some answers. For example, perhaps you’re running into this issue:
“Network Issues with Intel® Ethernet Controller I225-V” (as used on the motherboard in this sample build)
https://www.intel.com/content/www/us/en/support/articles/000057261/ethernet-products/gigabit-ethernet-controllers-up-to-2-5gbe.html
That issue involves two potential phenomena:
“Network connection drops when playing games. Also, network speed drops to half when the connection is dropped and then renewed.
“Ethernet connection does not recognize that there is a cable plugged in without disabling and then re-enabling the connection. On startup, the computer says there is no plug in the Ethernet connection.”
While Intel supplies a suggested remediation for those issues, another option would be to simply try installing an alternative network interface card – for example, a TP-Link 2.5GB PCIe Network Card (TX201) from Amazon (see https://amazon.com/TP-Link-2-5GB-PCIe-Network-TX201/dp/B0BG685PKM/ ) is less than $30.